首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   112篇
  国内免费   38篇
化学   22篇
物理学   92篇
无线电   371篇
  2024年   7篇
  2023年   88篇
  2022年   12篇
  2021年   59篇
  2020年   34篇
  2019年   32篇
  2018年   33篇
  2017年   38篇
  2016年   24篇
  2015年   19篇
  2014年   18篇
  2013年   17篇
  2012年   11篇
  2011年   8篇
  2010年   12篇
  2009年   7篇
  2008年   5篇
  2007年   4篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   10篇
  2002年   3篇
  2001年   9篇
  2000年   13篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有485条查询结果,搜索用时 171 毫秒
51.
采用熔盐法,以五水硝酸铋为铋源、硒粉为硒源、水合肼作为还原剂,在不同NaOH浓度下(0~3 mol/L)合成了 Bi2O2Se纳米片,并采用XRD,SEM,TEM以及XPS等对样品的形貌、结构和成分进行了表征.然后,以Bi2O2Se为工作电极制备了宽光谱自供能探测器,并探究了它们的光电探测性能.测试结果表明,在1.1 mol/L NaOH的条件下,Bi2O2Se自供能探测器的光电探测性能最优,在紫外-可见-红外波段具有较高的响应度.在365 nm紫外光照射下,光电流最高可以达到7.8 μA,其上升和下降时间分别为30和21 ms.同时,通过计算得到其响应度和探测率分别为4.2×10-4 A/W 和 1.02×109 Jones.  相似文献   
52.
In this work, room‐temperature‐operated ultrasensitive solution‐processed perovskite photodetectors (PDs) with near infrared (NIR) photoresponse are reported. In order to enable perovskite PDs possessing extended NIR photoresponse, novel n‐type low bandgap conjugated polymer, poly[(N,N′‐bis(2‐octyldodecyl)‐1,4,5,8‐naphthalene diimide‐2,6‐diyl) (2,5‐dioctyl‐3,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4‐dione‐5,5′‐diyl)] (NDI‐DPP), which has strong absorption in the NIR region, is developed and then employed in perovskite PDs. By the formation of type II band alignment between NDI‐DPP with single‐wall carbon nanotubes (SWCNTs), the NIR absorption of NDI‐DPP is exploited, which contributes to the NIR photoresponse for the perovskite PDs, where perovskite is incorporated with NDI‐DPP and SWCNTs as well. In addition, SWCNTs incorporated with perovskite active layer can offer the percolation pathways for high charge‐carrier mobility, which tremendously boosts the charge transfer in the photoactive layer, and consequently improves the photocurrent in the visible region. As a result, the perovskite PDs exhibit the responsivities of ≈400 and ≈150 mA W?1 and the detectivities of over 6 × 1012 Jones (1 Jones = 1 cm Hz1/2 W?1) and over 2 × 1012 Jones in the visible and NIR regions, respectively. This work reports the development of perovskite PDs with NIR photoresponse, which is terrifically beneficial for the practical applications of perovskite PDs.  相似文献   
53.
针对压电发电装置发电效率不高的问题,设计了一种基于单片机的压电陶瓷发电装置的能效优化系统,该系统可调节悬臂梁长度来改变装置的固有频率,让系统自动适应外界振动信号变化,实现装置的能效最大化。利用LTC3331电源管理芯片来进行整流、变压,将能量存储在可充电电池的同时,又将一部分电能作为整个系统的工作能源,实现优化系统的自供电。  相似文献   
54.
55.
2D materials, represented by transition metal dichalcogenides (TMDs), have attracted tremendous research interests in photoelectronic and electronic devices. However, for their relatively small bandgap (<2 eV), the application of traditional TMDs into solar‐blind ultraviolet (UV) photodetection is restricted. Here, for the first time, NiPS3 nanosheets are grown via chemical vapor deposition method. The nanosheets thinning to 3.2 nm with the lateral size of dozens of micrometers are acquired. Based on the various nanosheets, a linearity is found between the Raman intensity of specific Ag modes and the thickness, providing a convenient method to determine their layer numbers. Furthermore, a UV photodetector is fabricated using few‐layered 2D NiPS3 nanosheets. It shows an ultrafast rise time shorter than 5 ms with an ultralow dark current less than 10 fA. Notably, this UV photodetector demonstrates a high detectivity of 1.22 × 1012 Jones, outperforming some traditional wide‐bandgap UV detectors. The wavelength‐dependent photoresponsivity measurement allows the direct observation of an admirable cut‐off wavelength at 360 nm, which indicates a superior spectral selectivity. The promising photodetector performance, accompanied with the controllable fabrication and transfer process of nanosheet, lays the foundation of applying 2D semiconductors for ultrafast UV light detection.  相似文献   
56.
Large‐scale patterning of high‐quality organic semiconductors is crucial for the fabrication of optoelectronic devices with high efficiency and low cost. Yet, owing to the uncontrollable dewetting dynamics of organic liquid in conventional solution patterning techniques, large defect density of organic architectures is inevitable, which is detrimental to the device performance. To address this challenge, herein a capillary‐bridge‐mediated assembly technique is developed for regulating the dewetting process, yielding large‐scale 1D microstructure ordered arrays. The 1D arrays organic photodetectors exhibit a high optoelectronic performance of light on/off ratio exceeding 100, responsivity of 3.24 A W?1, detectivity of 3.20 × 1011 Jones and fast response speed, showing a great improvement compared with spin‐coated membrane devices. In addition, the significant enhancement of the device photodetection under the electronic field modulation is investigated by applying a back‐gate voltage and explained with the photocurrent predominating in the OFF state and the neglected thermocurrent and tunneling current promoting in the ON state of the phototransistor devices. The research offers a new insight for the facile fabrication of large‐scale integrated photodetectors and other organic devices based on patterned conjugated polymers.  相似文献   
57.
58.
Graphene field effect transistor sensitized by a layer of semiconductor (sensitizer/GFET) is a device structure that is investigated extensively for ultrasensitive photodetection. Among others, organometallic perovskite semiconductor sensitizer has the advantages of long carrier lifetime and solution processable. A further step to improve the responsivity is to design a structure that can promote electron–hole separation and selective carrier trapping in the sensitizer. Here, the use of a hybrid perovskite–organic bulk heterojunction (BHJ) as the light sensitizer to achieve this goal is demonstrated. Our spectroscopy and device measurements show that the CH3NH3PbI3–PCBM BHJ/GFET device has improved charge separation yield and carrier lifetime as compared to a reference device with a CH3NH3PbI3 sensitizer only. The key to these enhancement is the presence of [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM), which acts as charge separation and electron trapping sites, resulting in a 30‐fold increase in the photoresponsivity. This work shows that the use of a small amount of electron or hole acceptors in the sensitizer layer can be an effective strategy for improving and tuning the photoresponsivity of sensitizer/GFET photodetectors.  相似文献   
59.
Bionic acoustic sensors are an indispensable part to realize interactions between humans and robotics. In this work, a PVDF-TrFE sensor array with multiple active pixels combined with a 3D-printed bionic ear model is prepared, which can accurately detect sounds with different frequencies and locate the sound source from different directions. The PVDF-TrFE sensor array can clearly identify the sound within 25 cm, and the error between the accepted sound frequency and the original input frequency is less than 0.001%. Through the algorithm analysis of the input signal, the location of the sound source can be immediately analyzed. Compared with other acoustic sensors, this sensor has the advantages of being self-powered, small size, and high flexibility, which holds great potential for bionic applications.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号