首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   3篇
  国内免费   3篇
化学   54篇
力学   1篇
物理学   6篇
无线电   5篇
  2022年   9篇
  2021年   9篇
  2020年   5篇
  2018年   4篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   2篇
  1992年   3篇
  1991年   3篇
  1989年   1篇
排序方式: 共有66条查询结果,搜索用时 31 毫秒
11.
The mutant gene of HV2-K47 was obtained by polymerase chain reaction-directed mutagenesis and expressed in Escherichia coli. Many elements that could affect its expression level were compared. The product was purified to homogeneity via three chromatographic steps—ion exchange, gel filtration, and reverse phase chromatography—on the AKTA Explorer System. The antithrombin activity of HV2-K47 is much higher than that of recombinant HV2. Some properties and expression conditions were investigated systematically, which would be useful for further studies of hirudin and other small proteins.  相似文献   
12.
Methylotrophic yeast Pichia pastoris is convenient for the expression of eukaryotic foreign proteins owing to its potential for posttranslational modifications, protein folding, and facile culturing. In this work, human interleukin (hIL)-2 was successfully produced as a secreted fusion form in recombinant P. pastoris. By employing green fluorescent protein (GFP) as a monitoring fusion partner, clear identification of fusion protein expression and quantification of intracellular hIL-2 were possible even though there was no correlation between culture supernatant fluorescence and secreted hIL-2 owing to high media interference. Importantly, by the addition of casamino acids in basal medium, we were able to enhance threefold amount of secreted hIL-2, which was present both as a fusion and as a clipped fragment.  相似文献   
13.
The maintenance of whole-body glucose homeostasis is critical for survival, and is controlled by the coordination of multiple organs and endocrine systems. Pancreatic islet β cells secrete insulin in response to nutrient stimuli, and insulin then travels through the circulation promoting glucose uptake into insulin-responsive tissues such as liver, skeletal muscle and adipose. Many of the genes identified in human genome-wide association studies of diabetic individuals are directly associated with β cell survival and function, giving credence to the idea that β-cell dysfunction is central to the development of type 2 diabetes. As such, investigations into the mechanisms by which β cells sense glucose and secrete insulin in a regulated manner are a major focus of current diabetes research. In particular, recent discoveries of the detailed role and requirements for reorganization/remodeling of filamentous actin (F-actin) in the regulation of insulin release from the β cell have appeared at the forefront of islet function research, having lapsed in prior years due to technical limitations. Recent advances in live-cell imaging and specialized reagents have revealed localized F-actin remodeling to be a requisite for the normal biphasic pattern of nutrient-stimulated insulin secretion. This review will provide an historical look at the emergent focus on the role of the actin cytoskeleton and its regulation of insulin secretion, leading up to the cutting-edge research in progress in the field today.  相似文献   
14.
Antimicrobial resistance is one of the current public health challenges to be solved. The World Health Organization (WHO) has urgently called for the development of strategies to expand the increasingly limited antimicrobial arsenal. The development of anti-virulence therapies is a viable option to counteract bacterial infections with the possibility of reducing the generation of resistance. Here we report on the chemical structures of pyrrolidones DEXT 1–4 (previously identified as furan derivatives) and their anti-virulence activity on Pseudomonas aeruginosa strains. DEXT 1–4 were shown to inhibit biofilm formation, swarming motility, and secretion of ExoU and ExoT effector proteins. Also, the anti-pathogenic property of DEXT-3 alone or in combination with furanone C-30 (quorum sensing inhibitor) or MBX-1641 (type III secretion system inhibitor) was analyzed in a model of necrosis induced by P. aeruginosa PA14. All treatments reduced necrosis; however, only the combination of C-30 50 µM with DEXT-3 100 µM showed significant inhibition of bacterial growth in the inoculation area and systemic dispersion. In conclusion, pyrrolidones DEXT 1–4 are chemical structures capable of reducing the pathogenicity of P. aeruginosa and with the potential for the development of anti-virulence combination therapies.  相似文献   
15.
Carnosic acid (CA), a natural polyphenolic diterpene derived from Rosmarinus officinalis, has been proven to possess a broad spectrum of medicinal properties. Nevertheless, no studies on its impact on pancreatic β-cells have been conducted to date. Herein, clonal rat INS-1 (832/13) cells were pretreated with CA for 24 h and then incubated with streptozotocin (STZ) for 3 h. Several functional experiments were performed to determine the effect of CA on STZ-induced pancreatic β-cell damage, including cell viability assay, apoptosis analysis, and measurement of the level of insulin secretion, glucose uptake, malondialdehyde (MDA), reactive oxygen species (ROS), and proteins expression. STZ treatment decreased cell survival, insulin secretion, glucose uptake, and increased apoptosis, MDA, and ROS production in INS-1 cells. Furthermore, protein expression/phosphorylation analysis showed significant down-regulation in insulin, PDX-1, PI3K, AKT/p-AKT, and Bcl2. On the other hand, expression of BAX and BAD and cleaved PARP were significantly increased. Interestingly, preincubation with CA reversed the adverse impact of STZ at the cellular and protein expression levels. In conclusion, the data indicate that CA protects β-cells against STZ-induced damage, presumably through its modulatory effect on the different pathways, including the Pi3K/AKT/PDX-1/insulin pathway and mitochondria-mediated apoptosis.  相似文献   
16.
Heat shock proteins (HSPs) are highly conserved stress proteins known as molecular chaperones, which are considered to be cytoplasmic proteins with functions restricted to the intracellular compartment, such as the cytoplasm or cellular organelles. However, an increasing number of observations have shown that HSPs can also be released into the extracellular matrix and can play important roles in the modulation of inflammation and immune responses. Recent studies have demonstrated that extracellular HSPs (eHSPs) were involved in many human diseases, such as cancers, neurodegenerative diseases, and kidney diseases, which are all diseases that are closely linked to inflammation and immunity. In this review, we describe the types of eHSPs, discuss the mechanisms of eHSPs secretion, and then highlight their functions in the modulation of inflammation and immune responses. Finally, we take cancer as an example and discuss the possibility of targeting eHSPs for human disease therapy. A broader understanding of the function of eHSPs in development and progression of human disease is essential for developing new strategies to treat many human diseases that are critically related to inflammation and immunity.  相似文献   
17.
18.
19.
Catalpa pod has been used in traditional medicine for the treatment of diabetes mellitus in South America. Studies on the constituents of Catalpa species have shown that it is rich in iridoids. In the present study, three previously undescribed compounds (2–4), including two secoiridoid derivatives along with twelve known compounds, were isolated from the fruits of Catalpa bignonioides Walt. In addition, fully assigned 13C-NMR of 5,6-dihydroxy-7,4’-dimethoxyflavone-6-O-sophoroside (1) is reported for the first time in the present study. The structures of compounds were determined on the basis of extensive spectroscopic methods, including UV, IR, 1D, and 2D NMR, mass spectroscopy, and CD spectroscopic data. All the isolated compounds were evaluated for α-glucosidase inhibitory activity. Among the tested compounds, compounds 2, 3, and 9 exhibited significant inhibitory activity against α-glucosidase enzyme assay. Meanwhile, the effect of compounds 2, 3, and 9 on glucose-stimulated insulin secretion (GSIS) was measured using pancreatic β-cells. Compounds 2, 3, and 9 exhibited non-cytotoxicity-stimulated insulin secretion in INS-1 cells. The expression levels of proteins associated with β-cell function and insulin secretion such as phosphorylation of total insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), Akt, activated pancreatic duodenal homeobox-1 (PDX-1), and peroxisome proliferator-activated receptor-γ (PPAR-γ) were increased in INS-1 cells after treatment with compounds 2, 3, and 9. The findings of the present study could provide a scientific warrant for their application as a potential antidiabetic agent.  相似文献   
20.
蛋白质组装体广泛存在于生物体内,具有相关生物学功能或与人类的重要疾病密切相关。蛋白质组装体分子量大,通常难以溶解和结晶,限制了常用的结构研究手段如X射线晶体学和液体NMR等在其高分辨三维结构解析中的应用。固体核磁共振技术(ssNMR)在难溶、非结晶样品的三维结构解析中具有独特的优势,尤其随着固体NMR硬件包括高场磁体和高性能的探头、固体NMR多维脉冲实验技术和样品制备技术特别是同位素标记技术的快速发展,固体NMR已经成为了蛋白组装体三维结构解析的重要手段。在样品制备方法方面,强调了样品制备条件的优化对得到构象均一样品的重要性,以及丰富的同位素标记方法的使用对固体NMR谱图分辨率提高的重要作用。同时多种脉冲序列如质子驱动自旋扩散技术(PDSD),偶极辅助旋转共振技术(DARR),质子辅助重偶技术(PAR)或转移回波双共振技术(TEDOR)等的建立和发展为结构约束条件收集提供了基本的技术方法。此外,固体NMR与其它实验技术如扫描透射电镜(STEM),冷冻电镜(Cryo-EM)等和理论模拟方法的联用能显著地提高固体NMR的能力,从而能解析分子量更大、结构更复杂的蛋白质组装体的三维结构。本文以Aβ纤维和T3SS针状体的三维结构解析为例介绍固体NMR在蛋白质组装体结构研究的最新实验方法,重点介绍最新的距离约束条件获取的实验方法进展,以及固体NMR与其它实验和理论模拟研究手段的联用在蛋白质组装体结构解析上的最新进展,期望有助于读者对固体NMR技术在蛋白质组装体的三维结构解析方面的研究进展有所了解。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号