首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   906篇
  免费   163篇
  国内免费   99篇
化学   408篇
晶体学   6篇
力学   120篇
综合类   11篇
数学   228篇
物理学   247篇
无线电   148篇
  2024年   2篇
  2023年   31篇
  2022年   36篇
  2021年   39篇
  2020年   64篇
  2019年   49篇
  2018年   37篇
  2017年   69篇
  2016年   60篇
  2015年   44篇
  2014年   49篇
  2013年   71篇
  2012年   50篇
  2011年   34篇
  2010年   39篇
  2009年   33篇
  2008年   37篇
  2007年   35篇
  2006年   36篇
  2005年   44篇
  2004年   29篇
  2003年   23篇
  2002年   36篇
  2001年   38篇
  2000年   25篇
  1999年   25篇
  1998年   27篇
  1997年   19篇
  1996年   11篇
  1995年   10篇
  1994年   8篇
  1993年   9篇
  1992年   7篇
  1991年   2篇
  1990年   7篇
  1989年   3篇
  1988年   3篇
  1987年   6篇
  1986年   5篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有1168条查询结果,搜索用时 0 毫秒
1.
This paper presents a partial scan algorithm, calledPARES (PartialscanAlgorithm based onREduced Scan shift), for designing partial scan circuits. PARES is based on the reduced scan shift that has been previously proposed for generating short test sequences for full scan circuits. In the reduced scan shift method, one determines proch FFs must be controlled and observed for each test vector. According to the results of similar analysis, PARES selects these FFs that must be controlled or observed for a large number of test vectors, as scanned FFs. Short test sequences are generated by reducing scan shift operations using a static test compaction method. To minimize the loss of fault coverage, the order of test vectors is so determined that the unscanned FFs are in the state required by the next test vector. If there are any faults undetected yet by a test sequence derived from the test vectors, then PARES uses a sequential circuit test generator to detect the faults. Experimental results for ISCAS'89 benchmark circuits are given to demonstrate the effectiveness of PARES.  相似文献   
2.
The Liapunov technique has been introduced in differential games in a sequence of works over the last decade. We discuss application of this technique to the interface between two competitive semi-games, each with different qualitative objective. The feedback information for controllers is provided from designed, analytically integrable state predictors with reduced dynamics, which considerably shortens the computing time. The case is illustrated on the scenario of target reaching before being intercepted, and intercepting before target is reached.Deceased.  相似文献   
3.
We study the convergence properties of reduced Hessian successive quadratic programming for equality constrained optimization. The method uses a backtracking line search, and updates an approximation to the reduced Hessian of the Lagrangian by means of the BFGS formula. Two merit functions are considered for the line search: the 1 function and the Fletcher exact penalty function. We give conditions under which local and superlinear convergence is obtained, and also prove a global convergence result. The analysis allows the initial reduced Hessian approximation to be any positive definite matrix, and does not assume that the iterates converge, or that the matrices are bounded. The effects of a second order correction step, a watchdog procedure and of the choice of null space basis are considered. This work can be seen as an extension to reduced Hessian methods of the well known results of Powell (1976) for unconstrained optimization.This author was supported, in part, by National Science Foundation grant CCR-8702403, Air Force Office of Scientific Research grant AFOSR-85-0251, and Army Research Office contract DAAL03-88-K-0086.This author was supported by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under contracts W-31-109-Eng-38 and DE FG02-87ER25047, and by National Science Foundation Grant No. DCR-86-02071.  相似文献   
4.
Improving interfacial solar evaporation performance is crucial for the practical application of this technology in solar-driven seawater desalination. Lowering evaporation enthalpy is one of the most promising and effective strategies to significantly improve solar evaporation rate. In this study, a new pathway to lower vaporization enthalpy by introducing heterogeneous interactions between hydrophilic hybrid materials and water molecules is developed. 2D MoN1.2 nanosheets are synthesized and integrated with rGO nanosheets to form stacked MoN1.2-rGO heterostructures with massive junction interfaces for interfacial solar evaporation. Molecular dynamics simulation confirms that atomic thick 2D MoN1.2 and rGO in the MoN1.2-rGO heterostructures simultaneously interact with water molecules, while the interactions are remarkably different. These heterogeneous interactions cause an imbalanced water state, which easily breaks the hydrogen bonds between water molecules, leading to dramatically lowered vaporization enthalpy and improved solar evaporation rate (2.6 kg m−2 h−1). This study provides a promising strategy for designing 2D-2D heterostructures to regulate evaporation enthalpy to improve solar evaporate rate for clean water production.  相似文献   
5.
Sodium‐ion hybrid supercapacitors (Na‐HSCs) have potential for mid‐ to large‐scale energy storage applications because of their high energy/power densities, long cycle life, and the low cost of sodium. However, one of the obstacles to developing Na‐HSCs is the imbalance of kinetics from different charge storage mechanisms between the sluggish faradaic anode and the rapid non‐faradaic capacitive cathode. Thus, to develop high‐power Na‐HSC anode materials, this paper presents the facile synthesis of nanocomposites comprising Nb2O5@Carbon core–shell nanoparticles (Nb2O5@C NPs) and reduced graphene oxide (rGO), and an analysis of their electrochemical performance with respect to various weight ratios of Nb2O5@C NPs to rGO (e.g., Nb2O5@C, Nb2O5@C/rGO‐70, ‐50, and ‐30). In a Na half‐cell configuration, the Nb2O5@C/rGO‐50 shows highly reversible capacity of ≈285 mA h g?1 at 0.025 A g?1 in the potential range of 0.01–3.0 V (vs Na/Na+). In addition, the Na‐HSC using the Nb2O5@C/rGO‐50 anode and activated carbon (MSP‐20) cathode delivers high energy/power densities (≈76 W h kg?1 and ≈20 800 W kg?1) with a stable cycle life in the potential range of 1.0–4.3 V. The energy and power densities of the Na‐HSC developed in this study are higher than those of similar Li‐ and Na‐HSCs previously reported.  相似文献   
6.
Using insights from the forest ecology literature, we analyze the effect of injured trees on stand composition and carbon stored in above‐ground biomass and the implications for forest management decisions. Results from a Faustmann model with data for a tropical forest on Kalimantan show that up to 50% of the basal area of the stand before harvest can consist of injured trees. Considering injured trees leads to an increase in the amount of carbon in above‐ground biomass of up to 165%. These effects are larger under reduced impact logging than under conventional logging. The effects on land expectation value and cutting cycle are relatively small. The results suggest that considering injured trees in models for tropical forest management is important for the correct assessment of the potential of financial programs to store carbon and conserve forest ecosystem services in managed tropical forests, such as reducing emissions from deforestation and forest degradation and payment for ecosystem services. Recommendations for Resource Managers
  • Considering the role of injured trees is important for managing tropical forests
  • These trees can cover up to 50% of basal area and contain more than 50% of the carbon stored in above‐ground biomass
  • Reduced impact logging leads to a larger basal area of injured trees and more carbon stored in injured trees than conventional logging
  • Injured trees play an important role when assessing the potential for carbon storage in the context of payment for forest ecosystem services.
  相似文献   
7.
Abstract

In this study, the photovoltaic organic-inorganic structures were created by deposition of poly(3,4-ethylenedioxythiophene) film doped by poly(styrenesulfonate) and reduced graphene oxide on the porous silicon/silicon substrate. Formation of the hybrid structure was confirmed by means of atomic-force microscopy and Fourier transform infrared spectroscopy. The current-voltage characteristics of the obtained structures were studied. It was found the increase of electrical conductivity and photo-induced signal in organic-inorganic structures. Temporal parameters and spectral characteristics of photoresponse in the 400–1100?nm wavelength range were investigated. The widening of spectral photosensitivity in a short-wavelength range due to light absorption in various layers of the multijunction structure in comparison with single crystal silicon was revealed.  相似文献   
8.
9.
We study the properties of the double-frequency sine-Gordon model in the vicinity of the Ising quantum phase transition displayed by this model. Using a mapping onto a generalized lattice quantum Ashkin–Teller model, we obtain critical and nearly-off-critical correlation functions of various operators. We discuss applications of the double-sine-Gordon model to one-dimensional physical systems, like spin chains in a staggered external field and interacting electrons in a staggered potential.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号