首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6346篇
  免费   848篇
  国内免费   807篇
化学   5081篇
晶体学   34篇
力学   68篇
综合类   33篇
数学   279篇
物理学   1796篇
无线电   710篇
  2024年   19篇
  2023年   106篇
  2022年   164篇
  2021年   210篇
  2020年   231篇
  2019年   216篇
  2018年   194篇
  2017年   201篇
  2016年   284篇
  2015年   269篇
  2014年   298篇
  2013年   549篇
  2012年   396篇
  2011年   410篇
  2010年   352篇
  2009年   392篇
  2008年   387篇
  2007年   385篇
  2006年   372篇
  2005年   347篇
  2004年   317篇
  2003年   300篇
  2002年   249篇
  2001年   178篇
  2000年   166篇
  1999年   150篇
  1998年   138篇
  1997年   98篇
  1996年   99篇
  1995年   85篇
  1994年   72篇
  1993年   61篇
  1992年   55篇
  1991年   38篇
  1990年   30篇
  1989年   33篇
  1988年   25篇
  1987年   18篇
  1986年   19篇
  1985年   9篇
  1984年   19篇
  1983年   7篇
  1982年   12篇
  1981年   6篇
  1980年   5篇
  1979年   9篇
  1978年   4篇
  1977年   8篇
  1976年   3篇
  1975年   3篇
排序方式: 共有8001条查询结果,搜索用时 15 毫秒
41.
The present study shows new aspects of the synthesis of polyhalogenoarylphosphanes. The sterically hindered anions Ph(R)P-Y? (1a–c, Y = O, lone pair; R = Ph, But) have been used to show the complexity of the reaction between phosphorus nucleophiles and hexahalogenobenzenes or 9-bromofluorene (E3). The Ph(But)P-O? (1a) anion reacts with hexachlorobenzene (E1), hexafluorobenzene (E2), or E3 to give Ph(R)P(O)X (4a–c, X = F, Cl, Br) with the release of the corresponding carbanion as a nucleofuge, followed by side reactions. In contrast, the lithium phosphides Ph(R)PLi (1b,c) react with hexahalogenobenzenes to give the corresponding diphosphanes 5a,b as the main product and traces of P-arylated products, i.e., Ph(R)P-C6X5 (10a,b, X = Cl, F). Unexpectedly, Ph(But)PLi (1b) reacts with an excess of 9-bromofluorene to give only halogenophosphane Ph(But)P-X.  相似文献   
42.
2-Acyltetrahydro-β-carbolines 7 have been obtained by cyclization of adducts 5 from imines 3 of tryptamine 1 and aldehydes 2 with acyl chlorides 4 as a result of an intramolecular a-amidoalkylation reaction in the presence of bases as N,N-dimethylaniline or Et3N.  相似文献   
43.
ABSTRACT

Contamination of groundwater by heavy metal is one of the most emerging and serious environmental problems. There are so many methods which are available to overcome these problems. Among various available methods, hybrid organic–inorganic ion exchange resin has become more popular due to certain advantages over other available conventional methods; hence, in the present proposed work, we synthesised a hybrid organic–inorganic composite material polyacrylamide zirconium (IV) iodosulphosalicylate by using the sol-gel technique. Synthesised resin was characterised by various methods like Infrared spectroscopy and Thermogravimetric analysis-Differential thermal analysis. Various samples of this ion exchange resin are prepared by changing the condition of synthesis, i.e. concentration of acrylamide to rationalise the ion exchange capacity of the synthesise hybrid organic–inorganic ion exchange resins. A mixture of 0.1 M potassium iodate, 0.1 M sulphosalicylic acid and 0.1 M acrylamide was added dropwise to 0.4 M zirconium oxychloride accompanied by constant stirring for 8 h using magnetic stirrer at 70°C to yield polyacrylamide zirconium (IV) iodosulphosalicylate with maximum ion exchange capacity. Ion exchange capacity of synthesised resin was determined by column method and the maximum ion exchange capacity was found for Pb(II). Determination of kd values shows that the resin was highly selective for Pb (II).The selectivity for Pb was also evaluated by using certain binary mixture separation such as Ni (II)-Pb(II), Cu(II)-Pb(II), Cd(II)-Pb(II), Sr(II)-Pb(II), Ba(II)-Pb(II),Zn(II)-Pb(II) and Mg(II)-Pb(II).  相似文献   
44.
Infrared (IR) absorption in the 1000–3700 cm−1 range and 1H NMR spectroscopy reveal the existence of an asymmetric protonated water trimer, H7+O3, in acetonitrile. The core H7+O3 motif persists in larger protonated water clusters in acetonitrile up to at least 8 water molecules. Quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations reveal irreversible proton transport promoted by propagating the asymmetric H7+O3 structure in solution. The QM/MM calculations allow for the successful simulation of the measured IR absorption spectra of H7+O3 in the OH stretch region, which reaffirms the assignment of the H7+O3 spectra to a hybrid-complex structure: a protonated water dimer strongly hydrogen-bonded to a third water molecule with the proton exchanging between the two possible shared-proton Zundel-like centers. The H7+O3 structure lends itself to promoting irreversible proton transport in presence of even one additional water molecule. We demonstrate how continuously evolving H7+O3 structures may support proton transport within larger water solvates.  相似文献   
45.
A new polymorph of FeOF (up to now only known in its rutile type structure) was prepared by using a new synthesis approach formally based on anionic exchange using the well-known layered FeOCl as precursor. The synthesis was achieved using [CH3C(CH2O–)2(COO–)B] to vehicle fluorine through the formation of soluble (CH3)4N+ [CH3C(CH2O–)2(COO–)BF] and using N,N-dimethylformamide (DMF) as the reacting medium. The XRD pattern of layered FeOF can be indexed with an orthorhombic cell which doubles along the b axis (which is the direction perpendicular to the layers) with respect to that of pristine FeOCl (a = 3.792(1) Å, b = 12.699(1) Å, c = 3.321(1) Å). Both thermal analysis and diffraction indicate similar stability for the layered and rutile polymorphs. Such findings are rationalized through Density Functional Theory calculations. It is found that the energy difference between the more stable rutile and layered polymorphs is practically nul. The origin of the similar stability lies in the fact that although the number of Fe–F and Fe–O bonds is different in the two structures, the strength of both the total number of Fe–O as well as Fe–F bonds are found to be almost identical. Even if the crystal and electronic structures are considerably different, the total bonding and thus, the stability of the two polymorphs, is comparable. The stability of different FeOF rutile type structures is also analyzed.  相似文献   
46.
A terthiazole‐based molecular switch associating 6π electrocyclization, excited state intramolecular proton transfer (ESIPT), and strong metal binding capability was prepared. The photochemical and photophysical properties of this molecule and of the corresponding nickel and copper complexes were thoroughly investigated by steady‐state and ultrafast absorption spectroscopy and rationalized by DFT/TDDFT calculations. The switch behaves as a biphotochrome with time‐dependent photochemical outcome and displays efficient ESIPT‐based fluorescence photoswitching. Both photochemical reactions are suppressed by nickel or copper metalation, and the main factors contributing to the quenching of the electrocyclization are discussed.  相似文献   
47.
We report herein the synthesis and characterization of a new proton sponge derivative, 1,8‐bis(bis(diisopropylamino)cyclopropeniminyl)naphthalene 4 (DACN), as well as its bis‐protonated counterpart 6 . A crystal structure of 6 is presented, along with variable temperature 1H NMR data on the BF4? salt ( 6?BF4 ). DFT calculations were performed to investigate the structure of the monoprotonated species 7 and to gain insight into the structural and electronic nature of all three species. The proton affinity (PA) of 4 , calculated at the B3LYP/6‐311G++(d,p)//B3LYP/6‐31G(d,p) level, taking into account thermal corrections from the B3LYP/6‐31G(d,p) method, was 282.3 kcal mol?1, while its pKa was estimated at 27.0. NICS calculations were performed to examine the changes in aromaticity within these systems upon each successive protonation. Lastly, homodesmotic reaction schemes were used in order to estimate the factors contributing to the strong PA predicted for 4 .  相似文献   
48.
Fluorescence emission of wild‐type green fluorescent protein (GFP) is lost in the S65T mutant, but partly recovered in the S65T/H148D double mutant. These experimental findings are rationalized by a combined quantum mechanics/molecular mechanics (QM/MM) study at the QM(CASPT2//CASSCF)/AMBER level. A barrierless excited‐state proton transfer, which is exclusively driven by the Asp148 residue introduced in the double mutant, is responsible for the ultrafast formation of the anionic fluorescent state, which can be deactivated through a concerted asynchronous hula‐twist photoisomerization. This causes the lower fluorescence quantum yield in S65T/H148D compared to wild‐type GFP. Hydrogen out‐of‐plane motion plays an important role in the deactivation of the S65T/H148D fluorescent state.  相似文献   
49.
Conformational exchanges of synthetic macrocyclic acceptors are rather fast, which is rarely studied in the absence of guests. Here, we report multiple stimuli-responsive conformational exchanges between two preexisting conformations of 2,2′,4,4′-tetramethoxyl biphen[3]arene (MeBP3) macrocycle. Structures of these two conformations are both observed in solid state, and characterized by 1H NMR, 13C NMR and 2D NMR in solution. In particular, conformational exchanges can respond to solvents, temperatures, guest binding and acid/base addition. The current system may have a role to play in the construction of molecular switches and other stimuli-responsive systems.  相似文献   
50.
Microbial biosynthesis of hydrocarbon from CO2 reduction driven by electron uptake process from the cathodic electrode has gained intensive attention in terms of potential industrial application. However, a lack of a model system for detailed studies on the mechanism of the CO2 reduction hinders the improvement in efficiency for microbial electrosynthesis. Here, we examined the mechanism of microbial CO2 reduction at the cathode by a well‐described microbe for extracellular electron uptake, Shewanella oneidensis MR‐1, capable of reducing gaseous CO2 to produce formic acid. Using whole‐cell electrochemical assay, we observed stable cathodic current production at ?0.65 V vs Ag/AgCl KCl sat. associated with the introduction of CO2. The observed cathodic current was enhanced by the addition of 4 μM riboflavin, which specifically accelerates the electron uptake process of MR‐1 by the interaction to its outer‐membrane c‐type cytochromes. The significant impact of an uncoupler agent and a mutant strain of MR‐1 lacking sole F‐type ATPase suggested the importance of proton import to the cytoplasm for the cathodic CO2 reduction. The present data suggest that MR‐1 potentially serves as a model system for microbial electrosynthesis from CO2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号