首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3076篇
  免费   608篇
  国内免费   287篇
化学   1050篇
晶体学   63篇
力学   4篇
综合类   7篇
数学   11篇
物理学   799篇
无线电   2037篇
  2024年   16篇
  2023年   66篇
  2022年   56篇
  2021年   171篇
  2020年   139篇
  2019年   126篇
  2018年   95篇
  2017年   189篇
  2016年   216篇
  2015年   218篇
  2014年   279篇
  2013年   295篇
  2012年   262篇
  2011年   247篇
  2010年   203篇
  2009年   177篇
  2008年   215篇
  2007年   216篇
  2006年   164篇
  2005年   118篇
  2004年   114篇
  2003年   87篇
  2002年   58篇
  2001年   54篇
  2000年   33篇
  1999年   24篇
  1998年   17篇
  1997年   14篇
  1996年   10篇
  1995年   14篇
  1994年   8篇
  1993年   10篇
  1992年   7篇
  1991年   7篇
  1990年   5篇
  1989年   5篇
  1988年   3篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1983年   5篇
  1982年   1篇
  1981年   3篇
  1980年   3篇
  1978年   2篇
  1977年   3篇
  1975年   5篇
  1974年   4篇
  1973年   1篇
排序方式: 共有3971条查询结果,搜索用时 11 毫秒
61.
《中国化学快报》2019,30(11):1947-1950
Organic solid-state luminescent materials with high-efficiency deep-red emission have attracted considerable interest in recent years.Constructing donor-acceptor(D-A) type molecules has been one of most commonly used strategies to achieve deep-red emission,but it is always difficult to achieve high photoluminescence(PL) quantum yield(η_(PL)) due to forbidden charge-transfer state.Herein,we report a new D-A type molecule 4-(7-(4-(diphenylamino)phenyl)-9-oxo-9 H-fluoren-2-yl)benzonitrile(TPAFOCN),deriving from donor-acceptor-donor(D-A-D) type 2,7-bis(4-(diphenylamino)phenyl)-9 Hfluoren-9-one(DTPA-FO) with a fluorescence maximum of 627 nm in solids.This molecular design enables a transformation of acceptor from fluorenone(FO) itself to 4-(9-oxo-9 H-fluoren-2-yl)benzonitrile(FOCN).Compared with DTPA-FO,the introduction of cyanophenyl not only shifts the emission of TPA-FOCN to deep red with a fluorescence maximum of 668 nm in solids,but also maintains the high η_(PL) of 10%.Additionally,a solution-processed non-doped organic light-emitting diode(OLED)was fabricated with TPA-FOCN as emitter.TPA-FOCN device showed a maximum luminous efficiency of0.13 cd/A and a maximum external quantum efficiency(EQE) of 0.22% with CIE coordinates of(0.64,0.35).This work provides a valuable strategy for the rational design of high-efficiency deep-red emission materials using cyanophenyl as an ancillary acceptor.  相似文献   
62.
Cyclometalated iridium(III) complexes have been synthesized for use in a variety of photophysical applications, including polymer light emitting diodes (PLEDs). A series of new complexes with one electrochemically polymerizable ligand and two phenylpyridine(ppy)-based ligands have been prepared: [Ir(ppy)2L][PF6](1), [Ir(F-mppy)2L][PF6](2), and [Ir(Br-mppy)2L][PF6](3), where L = 3,8-bis(2,2′-bithien-5-yl)-1,10-phenanthroline. The ancillary ppy ligands can be easily varied synthetically to tune emission color of the monomer from blue–green to red. The solid state structure of complex 1 has been obtained by single crystal X-ray crystallography. Conducting polymer materials have been prepared by electropolymerization of monomers and were characterized through XPS analysis and spectroscopic studies.  相似文献   
63.
The characteristics of polymer light emitting diodes (PLEDs) (ITO/PPV/Ca) depend strongly on the conditions during preparation and operation. We studied the effects of heat treatment (during and after preparation) of PLEDs with OC1C10-PPV as active layer. PLEDs showed a reduction of both the current and the light output to 40 % after annealing for only 30 min at 65 °C. Effects on I-V characteristics were studied by measuring single carrier devices (hole- and electron-dominated devices). The current reduction after heat treatment can be ascribed to degradation of the ITO/PPV and the Ca/PPV interfaces.  相似文献   
64.
Thin polypyrrole (PPy) layers with an average thickness of about 0.5 μm were deposited, using potentiostatic and galvanostatic techniques, on CuInSe2 (CISe) structures prepared electrochemically on glass/ITO substrates and on CuInS2 (CIS) structures fabricated on Cu tape substrates. The polymer layer of p-type is considered as an alternative to the traditional buffer layer and window layer in the conventional cell structure. The deposition proceeded from an aqueous solution containing sodium naphthalene-2-sulfonate as a dopant. In order to prepare stable PPy films of high quality with a good adherence to the surface of inorganic semiconductors CIS and CISe, the optimal concentrations of reagents, current densities and electrodepositing potentials were selected experimentally. Electrochemical polymerization of pyrrole to PPy on CIS surfaces is faster under white light irradiation and the polymerisation starts at lower potential than in the dark. Significant photovoltage and photocurrent of the fabricated CISe/PPy and CIS/PPy structures have been observed under standard white light illumination.  相似文献   
65.
Photovoltaic phenomenon in tetracene and pentacene layers evaporated under the same conditions onto a glass substrate and provided with the same couple of electrodes is investigated. Comparison of the results obtained for both organic materials makes it possible to conclude that in spite of differences in mechanisms of charge carrier generation, the values of photovoltaic parameters are very similar.  相似文献   
66.
ABSTRACT

Methods have been found for sintering titania nanoparticles at low temperature, e.g., <150°C, and for rapid sensitization of the sintered particles. This discovery means that dye-sensitized, titania solar cells can be made on flexible substrates, such as poly(ethylene terephthalate), in a continuous roll-to-roll manufacturing process. The ability to produce solar cells in a continuous fashion should substantially lower the cost of the cells compared to batch processed, on-glass cells. The combined attributes of spectral sensitivity, flexibility, light weight, impact resistance and low cost should find utility a variety of handheld appliances in both indoor and outdoor situations. In its most advanced state of development, this technology would find application in off-grid power generation and thus provide the opportunity of bringing solar generated electricity to rural areas of the world.  相似文献   
67.
We describe herein the synthesis of novel donor–acceptor conjugated polymers with dithienobenzodithiophenes (DTBDT) as the electron donor and 2,1,3‐benzothiadiazole as the electron acceptor for high‐performance organic photovoltaics (OPVs). We studied the effects of strategically inserting thiophene into the DTBDT as a substituent on the skeletal structure on the opto‐electronic performances of fabricated devices. From UV/Vis absorption, electrochemical, and field‐effect transistor analyses, we found that the thiophene‐containing DTBDT derivative can substantially increase the orbital overlap area between adjacent conjugated chains and thus dramatically enhance charge‐carrier mobility up to 0.55 cm2 V?1 s?1. The outstanding charge‐transport characteristics of this polymer allowed the realization of high‐performance organic solar cells with a power conversion efficiency (PCE) of 5.1 %. Detailed studies on the morphological factors that enable the maximum PCE of the polymer solar cells are discussed along with a hole/electron mobility analysis based on the space‐charge‐limited current model.  相似文献   
68.
Low‐operating voltage, high mobility, and stable organic field‐effect transistors (OFETs) using polymeric dielectrics such as pristine poly(4‐vinyl phenol) (PVP) and poly(methyl methacrylate) (PMMA), dissolved in solvents of high dipole moment, have been achieved. High dipole moment solvents such as propylene carbonate and dimethyl sulfoxide used for dissolving the polymer dielectric enhance the charge carrier mobilities by three orders of magnitude in pentacene OFETs compared with low dipole moment solvents. Fast switching circuits with patterned gate PVP‐based pentacene OFETs demonstrated a switching frequency of 75 kHz at input voltages of |5 V|. The frequency response of the OFETs is attributed to a high degree of dipolar‐order in dielectric films obtained from high‐polarity solvents and the resulting energetically ordered landscape for transport. Remarkably, these pentacene‐based OFETs exhibited high stability under bias stress and in air with negligible shifts in the threshold voltage. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1533–1542  相似文献   
69.
Due to the difficulty in achieving high efficiency and high color purity simultaneously, blue emission is the limiting factor for the performance and stability of OLEDs. Since 2003, we have been working on organic light‐emitting diodes (OLEDs), especially on blue light. After a series of molecular designs, novel strategies have been proposed from different aspects. At first, highly efficient deep blue emission could be achieved through molecular design with highly twisted structure to suppress fluorescence quenching and redshift. Deep blue emitters with high efficiency in solid state, a twisted structure with aggregation induced emission (AIE) characteristics was incorporated to inhibit molecular aggregation, and triplet‐triplet fusion (TTF) and hybridized localized charge transfer (HLCT) were adopted to increase the ratio of triplet exciton used. Secondly, a highly efficient blue OLED could be achieved through improving charge transport. New electron transport materials (ETMs) with wide band gap were developed to control charge transport balance in devices. Thirdly, a highly efficient deep blue emission could be achieved through a mesoscopic structure of out‐coupling layer. A mesoscopic photonic structured organic thin film was fabricated on the top of metal electrode by self‐aggregation in order to improve the light out‐coupling efficiency.  相似文献   
70.
Iridium complexes bearing chelating cyclometalates are popular choices as dopant emitters in the fabrication of organic light-emitting diodes (OLEDs). In this contribution, we report a series of blue-emitting, bis-tridentate IrIII complexes bearing chelates with two fused five-six-membered metallacycles, which are in sharp contrast to the traditional designs of tridentate chelates that form the alternative, fused five-five metallacycles. Five IrIII complexes, Px-21 – 23 , Cz-4 , and Cz-5 , have been synthesized that contain a coordinated dicarbene pincer chelate incorporating a methylene spacer and a dianionic chromophoric chelate possessing either a phenoxy or carbazolyl appendage to tune the coordination arrangement. All these tridentate chelates afford peripheral ligand–metal–ligand bite angles of 166–170°, which are larger than the typical bite angle of 153–155° observed for their five-five-coordinated tridentate counterparts, thereby leading to reduced geometrical distortion in the octahedral frameworks. Photophysical measurements and TD-DFT studies verified the inherent transition characteristics that give rise to high emission efficiency, and photodegradation experiments confirmed the improved stability in comparison with the benchmark fac-[Ir(ppy)3] in degassed toluene at room temperature. Phosphorescent OLED devices were also fabricated, among which the carbazolyl-functionalized emitter Cz-5 exhibited the best performance among all the studied bis-tridentate phosphors, showing a maximum external quantum efficiency (EQEmax) of 18.7 % and CIEx,y coordinates of (0.145, 0.218), with a slightly reduced EQE of 13.7 % at 100 cd m−2 due to efficiency roll-off.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号