首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90117篇
  免费   17940篇
  国内免费   4288篇
化学   71503篇
晶体学   1322篇
力学   2333篇
综合类   180篇
数学   6191篇
物理学   13955篇
无线电   16861篇
  2024年   50篇
  2023年   249篇
  2022年   447篇
  2021年   791篇
  2020年   2218篇
  2019年   3822篇
  2018年   3517篇
  2017年   4091篇
  2016年   4679篇
  2015年   6948篇
  2014年   6823篇
  2013年   9707篇
  2012年   7454篇
  2011年   7071篇
  2010年   5796篇
  2009年   5575篇
  2008年   6021篇
  2007年   5417篇
  2006年   5005篇
  2005年   4691篇
  2004年   3968篇
  2003年   3551篇
  2002年   4068篇
  2001年   2402篇
  2000年   2235篇
  1999年   1290篇
  1998年   671篇
  1997年   545篇
  1996年   467篇
  1995年   500篇
  1994年   371篇
  1993年   313篇
  1992年   273篇
  1991年   206篇
  1990年   172篇
  1989年   124篇
  1988年   129篇
  1987年   109篇
  1986年   102篇
  1985年   86篇
  1984年   86篇
  1983年   40篇
  1982年   57篇
  1981年   43篇
  1980年   41篇
  1979年   43篇
  1978年   18篇
  1977年   13篇
  1975年   8篇
  1973年   16篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
21.
A (di)graph is supereulerian if it contains a spanning eulerian sub(di)graph. This property is a relaxation of hamiltonicity. Inspired by this analogy with hamiltonian cycles and by similar results in supereulerian graph theory, we analyze a number of sufficient Ore type conditions for a digraph to be supereulerian. Furthermore, we study the following conjecture due to Thomassé and the first author: if the arc‐connectivity of a digraph is not smaller than its independence number, then the digraph is supereulerian. As a support for this conjecture we prove it for digraphs that are semicomplete multipartite or quasitransitive and verify the analogous statement for undirected graphs.  相似文献   
22.
In present study, a simultaneous derivatization and air‐assisted liquid–liquid microextraction method combined with gas chromatography–nitrogen phosphorous detection has been developed for the determination of some phenolic compounds in biological samples. The analytes are derivatized and extracted simultaneously by a fast reaction with 1‐flouro‐2,4‐dinitrobenzene under mild conditions. Under optimal conditions low limits of detection in the range of 0.05–0.34 ng mL?1 are achievable. The obtained extraction recoveries are between 84 and 97% and the relative standard deviations are less than 7.2% for intraday (n = 6) and interday (n = 4) precisions. The proposed method was demonstrated to be a simple and efficient method for the analysis of phenols in biological samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
23.
A novel nanomagnetic basic catalyst of caesium carbonate supported on hydroxyapatite‐coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles (Ni0.5Zn0.5Fe2O4@HAP‐Cs2CO3) was prepared. This new catalyst was fully characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopy, X‐ray diffraction and vibrating sample magnetometry techniques, and then the catalytic activity of this catalyst was investigated in the synthesis of 1H‐pyrazolo[1,2‐b]phthalazine‐5,10‐dione derivatives. Also, Ni0.5Zn0.5Fe2O4@HAP‐Cs2CO3 could be reused at least five times without significant loss of activity and could be recovered easily by applying an external magnet. Thus, the developed nanomagnetic catalyst is potentially useful for the green and economic production of organic compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
24.
A new amino‐functionalized strontium–carboxylate‐based metal–organic framework (MOF) has been synthesized that undergoes single crystal to single crystal (SC‐to‐SC) transformation upon desolvation. Both structures have been characterized by single‐crystal X‐ray analysis. The desolvated structure shows an interesting 3D porous structure with pendent ?NH2 groups inside the pore wall, whereas the solvated compound possesses a nonporous structure with DMF molecules on the metal centers. The amino group was postmodified through Schiff base condensation by pyridine‐2‐carboxaldehyde and palladium was anchored on that site. The modified framework has been utilized for the Suzuki cross‐coupling reaction. The compound shows high activity towards the C?C cross‐coupling reaction with good yields and turnover frequencies. Gas adsorption studies showed that the desolvated compound had permanent porosity and was microporous in nature with a BET surface area of 2052 m2 g?1. The material also possesses good CO2 (8 wt %) and H2 (1.87 wt %) adsorption capabilities.  相似文献   
25.
In many organic electronic devices functionality is achieved by blending two or more materials, typically polymers or molecules, with distinctly different optical or electrical properties in a single film. The local scale morphology of such blends is vital for the device performance. Here, a simple approach to study the full 3D morphology of phase‐separated blends, taking advantage of the possibility to selectively dissolve the different components is introduced. This method is applied in combination with AFM to investigate a blend of a semiconducting and ferroelectric polymer typically used as active layer in organic ferroelectric resistive switches. It is found that the blend consists of a ferroelectric matrix with three types of embedded semiconductor domains and a thin wetting layer at the bottom electrode. Statistical analysis of the obtained images excludes the presence of a fourth type of domains. The criteria for the applicability of the presented technique are discussed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1231–1237  相似文献   
26.
We have synthesized a series of triarylamine‐cored molecules equipped with an adjacent amide moiety and dendritic peripheral tails in a variety of modes. We show by 1H NMR and UV/Vis spectroscopy that their supramolecular self‐assembly can be promoted in solution upon light stimulation and radical initiation. In addition, we have probed their molecular arrangements and mesomorphic properties in the bulk by integrated studies on their film state by using differential scanning calorimetry (DSC), variable‐temperature polarizing optical microscopy (VT‐POM), variable‐temperature X‐ray diffraction (VT‐XRD), and atomic force microscopy (AFM). Differences in the number and the disposition of the peripheral tails significantly affect their mesomorphic properties associated with their lamellar‐ or columnar‐packed nanostructures, which are based on segregated stacks of the triphenylamine cores and the lipophilic/lipophobic periphery. Such structural tuning is of interest for implementation of these soft self‐assemblies as electroactive materials from solution to mesophases.  相似文献   
27.
Self‐assembly of AB2 and AB3 type low molecular weight poly(aryl ether) dendrons that contain hydrazide units were used to investigate mechanistic aspects of helical structure formation during self‐assembly. The results suggest that there are three important aspects that control helical structure formation in such systems with acyl hydrazide/hydrazone linkage: i) J‐type aggregation, ii) the hydrogen‐bond donor/acceptor ability of the solvent, and iii) the dielectric constant of the solvent. The monomer units self‐assemble to form dimer structures through hydrogen‐bonding and further assembly of the hydrogen‐bonded dimers leads to macroscopic chirality in the present case. Dimer formation was confirmed by NMR spectroscopy and by mass spectrometry. The self‐assembly in the system was driven by hydrogen‐bonding and π–π stacking interactions. The morphology of the aggregates formed was examined by scanning electron microscopy, and the analysis suggests that aprotic solvent systems facilitate helical fibre formation, whereas introduction of protic solvents results in the formation of flat ribbons. This detailed mechanistic study suggests that the self‐assembly follows a nucleation–elongation model to form helical structures, rather than the isodesmic model.  相似文献   
28.
The dinuclear zinc complex reported by us is to date the most active zinc catalyst for the co‐polymerization of cyclohexene oxide (CHO) and carbon dioxide. However, co‐polymerization experiments with propylene oxide (PO) and CO2 revealed surprisingly low conversions. Within this work, we focused on clarification of this behavior through experimental results and quantum chemical studies. The combination of both results indicated the formation of an energetically highly stable intermediate in the presence of propylene oxide and carbon dioxide. A similar species in the case of cyclohexene oxide/CO2 co‐polymerization was not stable enough to deactivate the catalyst due to steric repulsion.  相似文献   
29.
Star copolymers have attracted significant interest due to their different characteristics compared with diblock copolymers, including higher critical micelle concentration, lower viscosity, unique spatial shape, or morphologies. Development of synthetic skills such as anionic polymerization and controlled radical polymerization have made it possible to make diverse architectures of polymers. Depending on the molecular architecture of the copolymer, numerous morphologies are possible, for instance, Archimedean tiling patterns and cylindrical microdomains at symmetric volume fraction for miktoarm star copolymers as well as asymmetric lamellar microdomains for star‐shaped copolymers, which have not been reported for linear block copolymers. In this review, we focus on morphologies and microphase separations of miktoarm (AmBn and ABC miktoarm) star copolymers and star‐shaped [(A‐b‐B)n] copolymers with nonlinear architecture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1–21  相似文献   
30.
Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO3 targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO3 is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na+ and the MoO3 host by conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO3 electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号