全文获取类型
收费全文 | 2169篇 |
免费 | 460篇 |
国内免费 | 68篇 |
专业分类
化学 | 487篇 |
晶体学 | 116篇 |
力学 | 90篇 |
综合类 | 13篇 |
数学 | 54篇 |
物理学 | 878篇 |
无线电 | 1059篇 |
出版年
2025年 | 16篇 |
2024年 | 51篇 |
2023年 | 66篇 |
2022年 | 66篇 |
2021年 | 68篇 |
2020年 | 93篇 |
2019年 | 87篇 |
2018年 | 69篇 |
2017年 | 90篇 |
2016年 | 107篇 |
2015年 | 99篇 |
2014年 | 152篇 |
2013年 | 160篇 |
2012年 | 168篇 |
2011年 | 156篇 |
2010年 | 126篇 |
2009年 | 137篇 |
2008年 | 112篇 |
2007年 | 155篇 |
2006年 | 101篇 |
2005年 | 78篇 |
2004年 | 69篇 |
2003年 | 78篇 |
2002年 | 62篇 |
2001年 | 57篇 |
2000年 | 34篇 |
1999年 | 33篇 |
1998年 | 26篇 |
1997年 | 25篇 |
1996年 | 26篇 |
1995年 | 15篇 |
1994年 | 13篇 |
1993年 | 17篇 |
1992年 | 5篇 |
1991年 | 15篇 |
1990年 | 9篇 |
1989年 | 13篇 |
1988年 | 10篇 |
1987年 | 3篇 |
1986年 | 4篇 |
1985年 | 3篇 |
1983年 | 2篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 7篇 |
1979年 | 10篇 |
1978年 | 1篇 |
1976年 | 1篇 |
排序方式: 共有2697条查询结果,搜索用时 15 毫秒
221.
Masahiro Yoshida Tsutomu Matsui Yasuo Hatate Takayuki Takei Koichiro Shiomori Shiro Kiyoyama 《Journal of polymer science. Part A, Polymer chemistry》2008,46(5):1749-1757
Nylon‐polystyrene microcapsules with immobilized ferroelectric liquid crystalline segments were prepared, and permeability control of an encapsulated core material was investigated under an external electric field. A ferroelectric liquid crystal monomer possessing both mesogenicity and chirality responded effectively to the external electrical field. Permeation of the material (oxprenolol) contained in the inner aqueous core of the microcapsules was enhanced under a weak electric field (2 V). Furthermore, the permeability of oxprenolol did not depend on the external electric field in the absence of the ferroelectric liquid crystal segments. To clarify the controlled‐release mechanism of the core material, the light transmittance of the polymer membranes was quantitatively evaluated under an external electric field using a handmade polarized light transmittance apparatus. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1749–1757, 2008 相似文献
222.
We report uncertainties in X‐ray photoelectron spectroscopy (XPS) intensities arising from commonly used methods and procedures for subtraction of the spectral background. These uncertainties were determined from a comparison of XPS intensities reported by volunteer analysts from 28 institutions and the corresponding intensities expected for a set of simulated XPS spectra. We analyzed peak intensities from 32 sets of data for a group of 12 spectra that had been simulated for a monochromated Al Kα source. Each reported intensity was compared with an expected intensity for the particular integration limits chosen by each analyst and known from the simulation design. We present ratios of the reported intensities to the expected intensities for the background‐subtraction methods chosen by the analysts. These ratios were close to unity in most cases, as expected, but deviations were found in the results from some analysts, particularly if the main peak was asymmetrical or if shakeup was present. We showed that better results for the Shirley, Tougaard, and linear backgrounds were obtained when analysts determined peak intensities over certain energy ranges or integration limits. We then were able to recommend integration limits that should be a useful guide in the determination of peak intensities for other XPS spectra. The use of relatively narrow integration limits with the Shirley and linear backgrounds, however, will lead to measures of peak intensities that are less than the total intensities. Although these measures may be satisfactory for some quantitative analyses, errors in quantitative XPS analyses can occur if there are changes in XPS lineshapes or shakeup fractions with change of chemical state. The use of curve‐fitting equations to fit an entire spectrum will generally exclude the shakeup contribution to the intensity of the main peak, and no account will be taken of any variation in the shakeup fraction with change of chemical state. Published in 2009 by John Wiley & Sons, Ltd. Certain commercial products are identified to specify the formats in which the test spectra were distributed and the software with which the test spectra were analyzed by participants. This identification does not imply that the products are endorsed or recommended by the National Institute of Standards and Technology, or that they are necessarily the most suitable for the purposes described. 相似文献
223.
We report uncertainties in X‐ray photoelectron spectroscopy (XPS) intensities arising from commonly used methods and procedures for subtraction of the spectral background. These uncertainties were determined from a comparison of XPS intensities reported by volunteer analysts and the corresponding intensities expected for a set of simulated XPS spectra. We analyzed peak intensities from 16 sets of data (submitted from 15 institutions) for a group of 12 spectra that had been simulated for an unmonochromated Al‐Kα source and similar intensities from 20 sets of data (submitted from 17 institutions) that had been simulated for an unmonochromated Mg‐Kα source. Each reported intensity was compared with an expected intensity for the particular integration limits chosen by each analyst and known from the simulation design. We present ratios of the reported intensities to the expected intensities for the background‐subtraction methods chosen by the analysts. These ratios were close to unity in most cases, as expected, but deviations were found in the results from some analysts, particularly if shakeup was present. We showed that better results for the Shirley and Tougaard backgrounds were obtained when analysts determined peak intensities over certain energy ranges or integration limits. We then were able to suggest integration limits that should be a useful guide in the determination of peak intensities for other XPS spectra. The use of relatively narrow integration limits with the Shirley and linear backgrounds, however, will lead to measures of peak intensity that are less than the total intensities. Although these measures may be satisfactory for some quantitative analyses, errors in quantitative XPS analyses can occur if there are changes in XPS lineshapes or shakeup fractions with change of chemical state. The use of curve‐fitting equations to fit an entire spectrum will generally exclude the shakeup contribution to the intensity of the main peak, and any variation in the shakeup fraction with change of chemical state will not be taken into account. Published in 2009 by John Wiley & Sons, Ltd. 相似文献
224.
Y. Zheng S. L. Simon G. B. McKenna 《Journal of Polymer Science.Polymer Physics》2002,40(18):2027-2036
Amorphous polymers below their glass‐transition temperature are inherently not at equilibrium. As a result, their structures continuously relax in an attempt to reach the equilibrium state. The current models of structural recovery can quantitatively describe the process. One of the parameters needed for the models is the nonlinearity parameter x. It has been proposed that x can be obtained from experimental data with the so‐called peak‐shift method. In this work, we use the Tool–Narayanaswamy–Moynihan model to identify the factors that determine the accuracy of the peak‐shift method and to quantify the errors in the value of x obtained from the peak‐shift method. In addition, we determine the influence of the error in x on the evaluation of the nonexponential model parameter β. Finally, the peak‐shift method is compared with the traditional curve‐fitting method for model parameter determination. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2027–2036, 2002 相似文献
225.
We studied the interactions of nylon‐6 with water by following the Fourier transform infrared spectra of a hydrated thin film during dehydration. Very small changes in the spectra caused by the interactions were clearly revealed by the application of spectral subtraction. The water was found to interact with amide groups to form hydrogen bonds with non‐hydrogen‐bonded or free C?O and NH groups in the amorphous portion in the first hydration sphere. This was deduced from an analysis of minus and plus peaks appearing around the absorptions of the NH stretching, amide I band, and amide II bands in the difference spectra between the spectra during dehydration and the one at the most dehydration. The interactions of the amide groups with water were significantly stronger than the hydrogen bond between CO and NH in the crystalline portion, according to the magnitude of the frequency shift of relevant bands. Water, as the interacting counterpart, showed a distorted OH stretching absorption with two close peaks at about 3450 cm?1. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1722–1729, 2003 相似文献
226.
Aji P. Mathew Gabriel Groeninckx G. H. Michler H. J. Radusch Sabu Thomas 《Journal of Polymer Science.Polymer Physics》2003,41(14):1680-1696
The effects of the blend ratio and initiating system on the viscoelastic properties of nanostructured natural rubber/polystyrene‐based interpenetrating polymer networks (IPNs) were investigated in the temperature range of ?80 to 150 °C. The studies were carried out at different frequencies (100, 50, 10, 1, and 0.1 Hz), and their effects on the damping and storage and loss moduli were analyzed. In all cases, tan δ and the storage and loss moduli showed two distinct transitions corresponding to natural rubber and polystyrene phases, which indicated that the system was not miscible on the molecular level. However, a slight inward shift was observed in the IPNs, with respect to the glass‐transition temperatures (Tg's) of the virgin polymers, showing a certain degree of miscibility or intermixing between the two phases. When the frequency increased from 0.1 to 100 Hz, the Tg values showed a positive shift in all cases. In a comparison of the three initiating systems (dicumyl peroxide, benzoyl peroxide, and azobisisobutyronitrile), the dicumyl peroxide system showed the highest modulus. The morphology of the IPNs was analyzed with transmission electron microscopy. The micrographs indicated that the system was nanostructured. An attempt was made to relate the viscoelastic behavior to the morphology of the IPNs. Various models, such as the series, parallel, Halpin–Tsai, Kerner, Coran, Takayanagi, and Davies models, were used to model the viscoelastic data. The area under the linear loss modulus curve was larger than that obtained by group contribution analysis; this showed that the damping was influenced by the phase morphology, dual‐phase continuity, and crosslinking of the phases. Finally, the homogeneity of the system was further evaluated with Cole–Cole analysis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1680–1696, 2003 相似文献
227.
B. K. Annis Man‐Ho Kim R. Alamo M. Pyda 《Journal of Polymer Science.Polymer Physics》2001,39(22):2852-2859
We used inelastic neutron scattering to probe the low‐energy excitations in semicrystalline isotactic polypropylenes with different degrees of crystallinity. The contributions from the amorphous and crystalline regions to the total scattering intensity were extracted under the assumption of a weighted linear contribution of the two regions in a simplified two‐phase system. The resulting intensity from the amorphous region showed a peak at 1.2 meV that was in good agreement with the previously determined boson peak characteristic of atactic polypropylene. The possibility of a contribution to the boson peak region by longitudinal acoustic mode modes that are characteristic of semicrystalline polymers and appear in the same low‐frequency region is discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2852–2859, 2001 相似文献
228.
In NMR, peak area quantitation is the most common method used because the area under a peak or peak group is proportional to the number of nuclei at those frequencies. Peak height quantitation has not enjoyed as much utility because of poor precision and linearity as a result of inconsistent shapes and peak widths (measured at half height). By using a post‐acquisition processing method employing a Gaussian or line‐broadening (exponential decay) apodization (i.e. weighting function) to normalize the shape and width of the internal standard (ISTD) peak, the heights of an analyte calibration spectrum can be compared to the analyte peaks in a sample spectrum resulting in accurate and precise quantitative results. Peak height results compared favorably with ‘clean’ peak area results for several hundred illicit samples of methamphetamine HCl, cocaine HCl, and heroin HCl, of varying composition and purity. Using peak height and peak area results together can enhance the confidence in the reported purity value; a major advantage in high throughput, automated quantitative analyses. Published in 2009 by John Wiley & Sons, Ltd. 相似文献
229.
A survey of the literature is made for the XPS analysis of food products (mainly spray‐dried powders, which reveal a considerable surface enrichment in lipids) and of microorganisms and related systems (extracellular polymer substances and biofilms). This survey is used as a background for discussions and recommendations regarding methodology. Sample preparation methods reviewed are freeze drying, analysis of frozen hydrated specimens and adsorption of surface‐active biocompounds on model substrates. Peak decomposition is a way to increase the wealth of information provided by the XPS spectra. It should be performed after a check that sample charge stabilization is satisfactory. Moreover, ensuring the precision needed to make comparisons within sets of samples may involve a trade‐off between imposing constraints and generating information. The examination of correlations between spectral data in the light of chemical guidelines is useful to validate or improve peak decomposition and component assignment, and may also upgrade the chemical information regarding speciation. Further upgrading may be achieved by expressing marker XPS data in terms of concentrations of compounds of interest. Different methods of computation are discussed, providing a composition in terms of ingredients, classes of biochemical compounds, or various organic and inorganic compounds. As an alternative or complement to this deterministic approach, multivariate analysis of suitable spectral windows provides spectral components, which may be used for comparing samples, and which may have a direct chemical relevance or be used to identify features of interest. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
230.
Judith Schlagnitweit Gerhard Zuckerstätter Norbert Müller 《Magnetic resonance in chemistry : MRC》2010,48(1):1-8
Standard phase cycled NMR pulse sequences were generalized such that for each individual step of the pulse phase cycle the free induction decay is stored separately without phase correction. This is in contrast to the usual practice, where pulse responses are phase shifted immediately (by applying a ‘receiver phase’) and co‐added as they are stored. The approach used here allows one to extract different types of NMR information, which are usually referred to as different ‘experiments’, from the same raw data set a posteriori by using complex linear combinations. Storing the free induction decays of individual phase cycle steps separately and using specific linear combinations of these data to obtain a particular type of information increase the overall efficiency of a given set of NMR experiments substantially, because all information can be derived from a single multiplexed data set. This ‘super‐experiment’ requires only as much time as the most complex of the derived specific experiments alone. The principle of this multipurpose approach was demonstrated by performing different multiple‐quantum filtered COSY experiments. It also becomes possible to generate linear combinations, which differ from the conventionally acquired spectra a posteriori. For example, we implemented diagonal peak reduction by using zero‐ and single‐quantum filtered COSY contributions without requiring additional experiment time. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献