首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19621篇
  免费   2462篇
  国内免费   1052篇
化学   6612篇
晶体学   41篇
力学   291篇
综合类   111篇
数学   355篇
物理学   4006篇
无线电   11719篇
  2024年   113篇
  2023年   383篇
  2022年   662篇
  2021年   777篇
  2020年   785篇
  2019年   622篇
  2018年   526篇
  2017年   797篇
  2016年   916篇
  2015年   1068篇
  2014年   1519篇
  2013年   1309篇
  2012年   1586篇
  2011年   1403篇
  2010年   1050篇
  2009年   1128篇
  2008年   1145篇
  2007年   1237篇
  2006年   996篇
  2005年   919篇
  2004年   789篇
  2003年   605篇
  2002年   431篇
  2001年   342篇
  2000年   301篇
  1999年   246篇
  1998年   216篇
  1997年   184篇
  1996年   173篇
  1995年   152篇
  1994年   85篇
  1993年   94篇
  1992年   77篇
  1991年   64篇
  1990年   65篇
  1989年   60篇
  1988年   65篇
  1987年   42篇
  1986年   32篇
  1985年   35篇
  1984年   21篇
  1983年   19篇
  1982年   32篇
  1981年   17篇
  1980年   13篇
  1979年   22篇
  1978年   5篇
  1971年   2篇
  1969年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
982.
In this paper, we presented a novel, rapid and highly sensitive sensor for glutathione (GSH), cysteine (Cys) and histidine (His) based on the recovered fluorescence of the carbon quantum dots (CQDs)–Hg(II) system. The CQDs were synthesized by microwave-assisted approach in one pot according to our previous report. The fluorescence of CQDs could be quenched in the presence of Hg(II) due to the coordination occurring between Hg(II) and functional groups on the surface of CQDs. Subsequently, the fluorescence of the CQDs–Hg(II) system was recovered gradually with the addition of GSH, Cys or His due to their stronger affinity with Hg(II). A good linear relationship was obtained from 0.10 to 20 μmol L−1 for GSH, from 0.20 to 45 μmol L−1 for Cys and from 0.50 to 60 μmol L−1 for His, respectively. This method has been successfully applied to the trace detection of GSH, Cys or His in human serum samples with satisfactory results. The proposed method was simple in design and fast in operation, which demonstrated great potential in bio-sensing fields.  相似文献   
983.
A facile, effective, and environmentally friendly method has been adopted for the first time to prepare tiny Co3O4 nanocrystals embedded carbon matrices without using surfactants, harmful organic reagents or extreme conditions. Structural characterizations reveal that the size-controlled Co3O4 nanocrystals are uniformly dispersed on carbon matrices. Electrochemical measurements reveal that Co3O4-ordered mesoporous carbon (OMC) can more efficiently catalyze glucose oxidation and acquire better detection parameters compared with those for the Co3O4-macroporous carbon, Co3O4-reduced graphene oxide, and free Co3O4 nanoparticles (NPs) (such as: the large sensitivity (2597.5 μA cm−2 mM−1 between 0 and 0.8 mM and 955.9 μA cm−2 mM−1 between 0.9 and 7.0 mM), fast response time, wide linear range, good stability, and surpassingly selective capability to electroactive molecules or Cl). Such excellent performances are attributed to the synergistic effect of the following three factors: (1) the high catalytic sites provided by the uniformly dispersed and size-controlled Co3O4 nanocrystals embedded on OMC; (2) the excellent reactant transport efficiency caused by the abundant mesoporous structures of OMC matrix: (3) the improved electron transport in high electron transfer rate (confinement of the Co3O4 NPs in nanoscale spaces ensured intimate contact between Co3O4 nanocrystals and the conducting OMC matrix). The superior catalytic activity and selectivity make Co3O4-OMC very promising for application in direct detection of glucose.  相似文献   
984.
A fast and facile approach to synthesize highly nitrogen (N)-doped carbon dots (N-CDs) by microwave-assisted pyrolysis of chitosan, acetic acid and 1,2-ethylenediamine as the carbon source, condensation agent and N-dopant, respectively, is reported. The obtained N-CDs are fully characterized by elemental analysis, transmission electron microscopy, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction pattern, X-ray photoelectron spectroscopy, UV–vis absorption, and photoluminescence spectroscopy. Doping N heteroatoms benefits the generation of N-CDs with stronger fluorescence emission. As the emission of N-CDs is efficiently quenched by Fe3+, the as-prepared N-CDs are employed as a highly sensitive and selective probe for Fe3+ detection. The detection limit can reach as low as 10 ppb, and the linear range is 0.010–1.8 ppm Fe3+. The as-synthesized N-CDs have been successfully applied for cell imaging and detecting Fe3+ in biosystem.  相似文献   
985.
Practical applications of chemical and biological detections through surface-enhanced Raman scattering (SERS) require high reproducibility, sensitivity, and efficiency, along with low-cost, straightforward fabrication. In this work, we integrated a poly-(dimethylsiloxane) (PDMS) chip with quasi-3D gold plasmonic nanostructure arrays (Q3D-PNAs), which serve as SERS-active substrates, into an optofluidic microsystem for online sensitive and reproducible SERS detections. The Q3D-PNA PDMS chip was fabricated through soft lithography to ensure both precision and low-cost fabrication. The optimal dimension of the Q3D-PNA in PDMS was designed using finite-difference time-domain (FDTD) electromagnetic simulations with a simulated enhancement factor (EF) of 1.6 × 106. The real-time monitoring capability of the SERS-based optofluidic microsystem was investigated by kinetic on/off experiments through alternatively flowing Rhodamine 6G (R6G) and ethanol in the microfluidic channel. A switch-off time of ∼2 min at a flow rate of 0.3 mL min−1 was demonstrated. When applied to the detection of low concentration malathion, the SERS-based optofluidic microsystem with Q3D-PNAs showed high reproducibility, significantly improved efficiency and higher detection sensitivity via increasing the flow rate. The optofluidic microsystem presented in this paper offers a simple and low-cost approach for online, label-free chemical and biological analysis and sensing with high sensitivity, reproducibility, efficiency, and molecular specificity.  相似文献   
986.
A novel, highly selective and sensitive paper-based colorimetric sensor for trace determination of copper (Cu2+) ions was developed. The measurement is based on the catalytic etching of silver nanoplates (AgNPls) by thiosulfate (S2O32−). Upon the addition of Cu2+ to the ammonium buffer at pH 11, the absorption peak intensity of AuNPls/S2O32− at 522 nm decreased and the pinkish violet AuNPls became clear in color as visible to the naked eye. This assay provides highly sensitive and selective detection of Cu2+ over other metal ions (K+, Cr3+, Cd2+, Zn2+, As3+, Mn2+, Co2+, Pb2+, Al3+, Ni2+, Fe3+, Mg2+, Hg2+ and Bi3+). A paper-based colorimetric sensor was then developed for the simple and rapid determination of Cu2+ using the catalytic etching of AgNPls. Under optimized conditions, the modified AgNPls coated at the test zone of the devices immediately changes in color in the presence of Cu2+. The limit of detection (LOD) was found to be 1.0 ng mL−1 by visual detection. For semi-quantitative measurement with image processing, the method detected Cu2+ in the range of 0.5–200 ng mL−1(R2 = 0.9974) with an LOD of 0.3 ng mL−1. The proposed method was successfully applied to detect Cu2+ in the wide range of real samples including water, food, and blood. The results were in good agreement according to a paired t-test with results from inductively coupled plasma-optical emission spectrometry (ICP-OES).  相似文献   
987.
This is the part II of a tutorial review intending to give an overview of the state of the art of method validation in liquid chromatography mass spectrometry (LC–MS) and discuss specific issues that arise with MS (and MS–MS) detection in LC (as opposed to the “conventional” detectors). The Part II starts with briefly introducing the main quantitation methods and then addresses the performance related to quantification: linearity of signal, sensitivity, precision, trueness, accuracy, stability and measurement uncertainty. The last section is devoted to practical considerations in validation. With every performance characteristic its essence and terminology are addressed, the current status of treating it is reviewed and recommendations are given, how to handle it, specifically in the case of LC–MS methods.  相似文献   
988.
This is the part I of a tutorial review intending to give an overview of the state of the art of method validation in liquid chromatography mass spectrometry (LC–MS) and discuss specific issues that arise with MS (and MS/MS) detection in LC (as opposed to the “conventional” detectors). The Part I briefly introduces the principles of operation of LC–MS (emphasizing the aspects important from the validation point of view, in particular the ionization process and ionization suppression/enhancement); reviews the main validation guideline documents and discusses in detail the following performance parameters: selectivity/specificity/identity, ruggedness/robustness, limit of detection, limit of quantification, decision limit and detection capability. With every method performance characteristic its essence and terminology are addressed, the current status of treating it is reviewed and recommendations are given, how to determine it, specifically in the case of LC–MS methods.  相似文献   
989.
High-energy assisted extraction techniques, like ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE), are widely applied over the last years for the recovery of bioactive compounds such as carotenoids, antioxidants and phenols from foods, animals and herbal natural sources. Especially for the case of xanthophylls, the main carotenoid group of crustaceans, they can be extracted in a rapid and quantitative way with the use of UAE and MAE.  相似文献   
990.
A novel l-glutamate biosensor was fabricated using bacteria surface-displayed glutamate dehydrogenase (Gldh-bacteria). Here the cofactor NADP+-specific dependent Gldh was expressed on the surface of Escherichia coli using N-terminal region of ice nucleation protein (INP) as the anchoring motif. The cell fractionation assay and SDS-PAGE analysis indicated that the majority of INP-Gldh fusion proteins were located on the surface of cells. The biosensor was fabricated by successively casting polyethyleneimine (PEI)-dispersed multi-walled carbon nanotubes (MWNTs), Gldh-bacteria and Nafion onto the glassy carbon electrode (Nafion/Gldh-bacteria/PEI-MWNTs/GCE). The MWNTs could not only significantly lower the oxidation overpotential towards NAPDH, which was the product of NADP+ involving in the oxidation of glutamate by Gldh, but also enhanced the current response. Under the optimized experimental conditions, the current–time curve of the Nafion/Gldh-bacteria/PEI-MWNTs/GCE was performed at +0.52 V (vs. SCE) by amperometry varying glutamate concentration. The current response was linear with glutamate concentration in two ranges (10 μM–1 mM and 2–10 mM). The low limit of detection was estimated to be 2 μM glutamate (S/N = 3). Moreover, the proposed biosensor is stable, specific, reproducible and simple, which can be applied to real samples detection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号