首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4662篇
  免费   1033篇
  国内免费   826篇
化学   4531篇
晶体学   48篇
力学   34篇
综合类   37篇
数学   19篇
物理学   912篇
无线电   940篇
  2024年   44篇
  2023年   218篇
  2022年   229篇
  2021年   372篇
  2020年   435篇
  2019年   281篇
  2018年   247篇
  2017年   218篇
  2016年   280篇
  2015年   261篇
  2014年   283篇
  2013年   420篇
  2012年   278篇
  2011年   285篇
  2010年   185篇
  2009年   225篇
  2008年   239篇
  2007年   264篇
  2006年   235篇
  2005年   198篇
  2004年   159篇
  2003年   167篇
  2002年   113篇
  2001年   100篇
  2000年   103篇
  1999年   73篇
  1998年   76篇
  1997年   72篇
  1996年   64篇
  1995年   74篇
  1994年   58篇
  1993年   48篇
  1992年   58篇
  1991年   32篇
  1990年   31篇
  1989年   20篇
  1988年   17篇
  1987年   7篇
  1986年   13篇
  1985年   3篇
  1984年   7篇
  1983年   7篇
  1982年   2篇
  1981年   4篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   7篇
  1973年   3篇
排序方式: 共有6521条查询结果,搜索用时 31 毫秒
881.
Given that the performance of a lithium–oxygen battery (LOB) is determined by the electrochemical reactions occurring on the cathode, the development of advanced cathode nanoarchitectures is of great importance for the realization of high‐energy‐density, reversible LOBs. Herein, a robust cathode design is proposed for LOBs based on a dual‐phasic carbon nanoarchitecture. The cathode is composed of an interwoven network of porous metal–organic framework (MOF) derived carbon (MOF‐C) and conductive carbon nanotubes (CNTs). The dual‐phasic nanoarchitecture incorporates the advantages of both components: MOF‐C provides a large surface area for the oxygen reactions and a large pore volume for Li2O2 storage, and CNTs provide facile pathways for electron and O2 transport as well as additional void spaces for Li2O2 accommodation. It is demonstrated that the synergistic nanoarchitecturing of the dual‐phasic MOF‐C/CNT material results in promising electrochemical performance of LOBs, as evidenced by a high discharge capacity of ≈10 050 mAh g?1 and a stable cycling performance over 75 cycles.  相似文献   
882.
Combining transition metal oxide catalysts with conductive carbonaceous material is a feasible way to improve the conductivity. However, the electrocatalytic performance is usually not distinctly improved because the interfacial resistance between metal oxides and carbon is still large and thereby hinders the charge transport in catalysis. Herein, the conductive interface between poorly conductive NiO nanoparticles and semi‐conductive carbon nitride (CN) is constructed. The NiO/CN exhibits much‐enhanced oxygen evolution reaction (OER) performance than corresponding NiO and CN in electrolytes of KOH solution and phosphate buffer saline, which is also remarkably superior over NiO/C, commercial RuO2, and mostly reported NiO‐based catalysts. X‐ray photoelectron spectroscopy and extended X‐ray absorption fine structure spectrum reveal that a metallic Ni–N bond is formed between NiO and CN. Density functional theory calculations suggest that NiO and CN linked by a Ni–N bond possess a low Gibbs energy for OER intermediate adsorptions, which not only improves the transfer of charge but also promotes the transmission of mass in OER. The metal–nitrogen bonded conductive and highly active interface pervasively exists between CN and other transition metal oxides including Co3O4, CuO, and Fe2O3, making it promising as an inexpensive catalyst for efficient water splitting.  相似文献   
883.
Organic framework materials constructed by covalently linking organic building blocks into framework structures are highly regarded as paragons to precisely control the material structure at the atomic level. Herein, a direct synthesis methodology is proposed as a guidance for the bulk synthesis of organic framework materials. Framework porphyrin (POF) materials are one‐pot synthesized to demonstrate the advances of the direct synthesis methodology. The as‐synthesized POF materials are intrinsically 2D and exhibit impressive versatility in composition, structure, morphology, and function, delivering a free‐standing POF film, hybrids of POF and nanocarbon, and cobalt‐coordinated POF. When applied as electrocatalysts for oxygen reduction reaction and oxygen evolution reaction, the cobalt‐coordinated POF exhibits excellent bifunctional electrocatalytic performances comparable with noble‐metal‐based electrocatalysts. The direct synthesis methodology and resultant POF materials demonstrate the ability of controlling materials at the atomic level for energy electrocatalysis.  相似文献   
884.
The self‐catalyzed growth of nanostructures on material surfaces is one of the most time‐ and cost‐effective ways to design multifunctional catalysts for a wide range of applications. Herein, the use of this technique to develop a multicomponent composite catalyst with CoSx core encapsulated in an ultrathin porous carbon shell entangled with Co, N‐codoped carbon nanotubes is reported. The as‐prepared catalyst has a superior catalytic activity for oxygen evolution and oxygen reduction reactions, an ultralow potential gap of 0.74 V, and outstanding durability, surpassing most previous reports. Such superiority is ascribed, in part, to the unique 3D electrode architecture of the composite, which is favorable for transporting oxygen species and electrons and creates a synergy between the components with different functionalities. Moreover, the flexible solid Zn–air battery assembled with such an air electrode shows a steady discharge voltage plateau of 1.25 V and a round‐trip efficiency of 70% at 1 mA cm?2. This work presents a simple strategy to design highly efficient bifunctional oxygen electrocatalysts and may pave the way for the practical application of these materials in many energy conversion/storage devices.  相似文献   
885.
886.
The rational construction of efficient bifunctional oxygen electrocatalysts is of immense significance yet challenging for rechargeable metal–air batteries. Herein, this work reports a metal–organic framework derived 2D nitrogen‐doped carbon nanotubes/graphene hybrid as the efficient bifunctional oxygen electrocatalyst for rechargeable zinc–air batteries. The as‐obtained hybrid exhibits excellent catalytic activity and durability for the oxygen electrochemical reactions due to the synergistic effect by the hierarchical structure and heteroatom doping. The assembled rechargeable zinc–air battery achieves a high power density of 253 mW cm?2 and specific capacity of 801 mAh gZn?1 with excellent cycle stability of over 3000 h at 5 mA cm?2. Moreover, the flexible solid‐state rechargeable zinc–air batteries assembled by this hybrid oxygen electrocatalyst exhibits a high discharge power density of 223 mW cm?2, which can power 45 light‐emitting diodes and charge a cellphone. This work provides valuable insights in designing efficient bifunctional oxygen electrocatalysts for long‐life metal–air batteries and related energy conversion technologies.  相似文献   
887.
Owing to the unique electronic properties, rare‐earth modulations in noble‐metal electrocatalysts emerge as a critical strategy for a broad range of renewable energy solutions such as water‐splitting and metal–air batteries. Beyond the typical doping strategy that suffers from synthesis difficulties and concentration limitations, the innovative introduction of rare‐earth is highly desired. Herein, a novel synthesis strategy is presented by introducing CeO2 support for the nickel–iron–chromium hydroxide (NFC) to boost the oxygen evolution reaction (OER) performance, which achieves an ultralow overpotential at 10 mA cm?2 of 230.8 mV, the Tafel slope of 32.7 mV dec?1, as well as the excellent durability in alkaline solution. Density functional theory calculations prove the established df electronic ladders, by the interaction between NFC and CeO2, evidently boosts the high‐speed electron transfer. Meanwhile, the stable valence state in CeO2 preserves the high electronic reactivity for OER. This work demonstrates a promising approach in fabricating a nonprecious OER electrocatalyst with the facilitation of rare‐earth oxides to reach both excellent activity and high stability.  相似文献   
888.
Nowadays various inorganic nanoparticles that generate highly reactive hydroxyl radical ( · OH) on the basis of Fenton‐like catalytic activity of metal ions have been designed for chemodynamic therapy. However, the high level of adaptive antioxidants [glutathione (GSH)] in cancer cells could effectively consume · OH to compromise the treatment efficiency and biosafety of these inorganic nanoparticles, and this is a general concern in chemodynamic therapy. Herein, a new biodegradable nanoscale coordination polymer (NCP) is developed by integration of cisplatin prodrug (DSCP) and iron (III) ions through a reverse microemulsion method. The DSCP in the NCPs could react with GSH to release free cisplatin, while the iron (III) ions could be reduced by GSH into iron (II) to enable Fenton reaction, subsequently leading to amplified intracellular oxidative stress. After surface modification of polyethylene glycol (PEG) and cyclo[Arg‐Gly‐Asp‐D‐Phe‐Lys(mpa)] peptide (cRGD), Fe‐DSCP‐PEG‐cRGD shows an excellent targeting effect against αvβ3‐integrin overexpressed tumor cells. Furthermore, Fe‐DSCP‐PEG‐cRGD enables significant chemo and chemodynamic therapy with dramatically enhanced therapeutic efficiency in comparison to relative monotherapies. Importantly, Fe‐DSCP‐PEG‐cRGD could be efficiently cleared out from mice through feces and urine postinjection 7 days. The NCP presented in this work is simple and economical, which shows great biodegradability and biosafety for potential clinical translation.  相似文献   
889.
Tuning the intrinsic strain of Pt‐based nanomaterials has shown great promise for improving the oxygen reduction reaction (ORR) performance. Herein, reported is a tunable surface strain in penta‐twinned ternary Pt–Cu–Mn nanoframes (NFs). Pt–Cu–Mn ultrafine NFs (UNFs) exhibit ≈1.5% compressive strain compared to Pt–Cu–Mn pentagonal NFs (PNFs) and show the superior activity toward ORR in an alkaline environment. Specifically, the specific and mass activity of Pt–Cu–Mn UNFs are 3.38 mA cm?2 and 1.45 A mg?1, respectively, which is 1.45 and 1.71 times higher than that of Pt–Cu–Mn PNFs, demonstrating that compressive strain in NFs structure can effectively enhance the catalytic activity of ORR. Impressively, Pt–Cu–Mn UNFs exhibit 8.67 and 9.67 times enhanced specific and mass activity compared with commercial Pt/C. Theoretical calculations reveal that compression on the surface of Pt–Cu–Mn UNFs can weaken the bonding strengths and adsorption of oxygen‐containing intermediates, resulting in an optimal condition for ORR.  相似文献   
890.
Reactive oxygen species (ROS) depletion and low ROS production that result from the intratumoral redox metabolism equilibrium and low energy conversion efficiency from ultrasound mechanical energy to ROS‐represented chemical energy, respectively, are two vital inhibitory factors of sonodynamic therapy (SDT). To address the two concerns, a tumor metabolism‐engineered composite nanoplatform capable of intervening intratumoral ROS metabolism, breaking the redox equilibrium, and reshaping the tumor microenvironment is constructed to reinforce SDT against tumors. In this metabolism‐engineered nanoplatform, Nb2C nanosheets serve as the scaffold to accommodate TiO2 sonosensitizers and l ‐buthionine‐sulfoximine. Systematic experiments show that such nanoplatforms can reduce ROS depletion via suppressing glutathione synthesis and simultaneously improving ROS production via the Nb2C‐enhanced production and separation of electron–hole pairs. Contributed by the combined effect, net ROS content can be significantly elevated, which results in the highly efficient anti‐tumor outcomes in vivo and in vitro. Moreover, the combined design principles, that is, tumor metabolism modulation for reducing ROS depletion and electron–hole pair separation for facilitating ROS production, can be extended to other ROS‐dependent therapeutic systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号