首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2656篇
  免费   360篇
  国内免费   260篇
化学   2124篇
晶体学   40篇
力学   18篇
综合类   13篇
数学   4篇
物理学   622篇
无线电   455篇
  2024年   14篇
  2023年   84篇
  2022年   47篇
  2021年   85篇
  2020年   117篇
  2019年   86篇
  2018年   68篇
  2017年   79篇
  2016年   128篇
  2015年   122篇
  2014年   151篇
  2013年   227篇
  2012年   145篇
  2011年   147篇
  2010年   110篇
  2009年   161篇
  2008年   164篇
  2007年   170篇
  2006年   198篇
  2005年   131篇
  2004年   134篇
  2003年   131篇
  2002年   94篇
  2001年   55篇
  2000年   69篇
  1999年   64篇
  1998年   52篇
  1997年   43篇
  1996年   42篇
  1995年   38篇
  1994年   16篇
  1993年   19篇
  1992年   25篇
  1991年   8篇
  1990年   8篇
  1989年   7篇
  1988年   9篇
  1987年   9篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1980年   2篇
  1979年   4篇
  1977年   1篇
排序方式: 共有3276条查询结果,搜索用时 15 毫秒
51.
陈希慧  潘艳坤  黄初升  罗思琴  蔡民廷 《分子催化》2005,19(3):172-176,i001
研究了TiO2-SiO2混合氧化物对纸业废水中有色有机物的吸附与光催化降解效率.常温下.TiO2对纸业废水中有色有机物的吸附符合Freundlich模型,Qe=0.239Ce^0.791。TiO2-SiO2混合氧化物对纸业废水中有色有机物的吸附与光催化降解效率与催化剂样品的组成有关,光催化降解效率也与TiO2-SiO2表面总酸量有关.  相似文献   
52.
CexTi1-xO2复合氧化物的结构及负载CuO对NO还原性能研究   总被引:4,自引:1,他引:4  
采用共沉淀法制备了不同摩尔比(x=0,0.1,0.2~0.9,1.0)的CexTi1-xO2复合氧化物,考察了CuO/CexTi1-xO2对NO+CO反应的活性,并用BET,TPR和XRD等技术对各试样进行了表征。结果表明,试样的结构和还原特性随焙烧温度变化而变化。XRD检测表明,x值从0.1增加到0.5时,650℃焙烧的试样已形成了CeTi2O6物相,且主要以无定形状态存在;试样经800℃焙烧后晶化完全;x>0.6时,一些TiO2已经进入了CeO2晶格,形成了Ce Ti固溶体。催化剂活性评价表明CuO/CexTi1-xO2(650℃)对NO+CO反应具有较好的活性,其活性随x值变化而变化。TPR及XRD结果表明CuO与CeTi2O6之间存在很强的相互作用,CeTi2O6物相的形成使CuO的还原峰温由380℃提前到200℃,而CuO的存在又促进CeTi2O6的还原峰温从600℃提前至200~300℃。  相似文献   
53.
The structures, energies, and natural atomic charges of 2-dimethylaminophenol oxide, 2-Me2N-(O)C6H4OH, and 2-dimethylphosphinylphenol, 2-Me2P(O)C6H4OH, in three different conformations were computed at the ab initio MP2/6-31G* level. Computed natural charges indicate distributions of electron density in amine oxides and phosphine oxides that are quite different from what is normally assumed on the basis of the formal charges in the usual representations of these compounds. The charges on nitrogen and phosphorus in these compounds are typically computed to be approximately zero on nitrogen and +2 on phosphorus, and the oxygen is considerably more negative in the phosphine oxide than in the amino oxide. Electronegativity differences thus play a larger role and formal charges a smaller one in determining atomic charges in these compounds than is generally believed. Despite the more negative oxygen in phosphine oxides, amine oxides are computed to be considerably more basic when participating in hydrogen bonding. Calculations treating the computed natural charges on these six conformations as point charges for classical approximations of the coulombic energies support the idea that the quantum mechanically computed relative energies are largely determined by coulombic interactions.  相似文献   
54.
The rational design of economic and high-performance electrocatalytic water-splitting systems is of great significance for energy and environmental sustainability. Developing a sustainable energy conversion-assisted electrocatalytic process provides a promising novel approach to effectively boost its performance. Herein, a self-sustained water-splitting system originated from the heterostructure of perovskite oxide with 2D Ti3C2Tx MXene on Ni foam (La1-xSrxCoO3/Ti3C2Tx MXene/Ni) that shows high activity for solar-powered water evaporation and simultaneous electrocatalytic water splitting is presented. The all-in-one interfacial electrocatalyst exhibits highly improved oxygen evolution reaction (OER) performance with a low overpotential of 279 mV at 10 mA cm−2 and a small Tafel slope of 74.3 mV dec−1, superior to previously reported perovskite oxide-based electrocatalysts. Density functional theory calculations reveal that the integration of La0.9Sr0.1CoO3 with Ti3C2Tx MXene can lower the energy barrier for the electron transfer and decrease the OER overpotential, while COMSOL simulations unveil that interfacial solar evaporation could induce OH enrichment near the catalyst surfaces and enhance the convection flow above the catalysts to remove the generated gas, remarkably accelerating the kinetics of electrocatalytic water splitting.  相似文献   
55.
Growth and characterization of metal-oxide thin films foster successful development of oxide-material-integrated thin-film devices represented by metal-oxide-semiconductor field-effect transistors (MOSFET), drawing enormous technological and scientific interest for several decades. In recent years, functional oxide heterostructures have demonstrated remarkable achievements in modern technologies and provided deeper insights into condensed-matter physics and materials science owing to their versatile tunability and selective amplification of the functionalities. One of the most critical aspects of their physical properties is the polar perturbation stemming from the ionic framework of an oxide. By engineering and exploiting the structural, electrical, magnetic, and optical characteristics through various routes, numerous perceptive studies have clearly shown how polar perturbations advance functionalities or drive exotic physical phenomena in complex oxide heterostructures. In this review, both intrinsic (engraved by thin-film heteroepitaxy) and extrinsic (reversibly controllable defect-mediated disorder and polar adsorbates) elements of polar perturbations, highlighting their abilities for the development of highly tunable functional properties are summarized. Scientifically, the recent approaches of polar perturbations render one to consolidate a prospect of atomic-level manipulation of polar order in epitaxial oxide thin films. Technologically, this review also offers useful guidelines for rational design to heterogeneously integrated oxide-based multi-functional devices with high performances.  相似文献   
56.
Miniaturization and energy consumption by computational systems remain major challenges to address. Optoelectronics based synaptic and light sensing provide an exciting platform for neuromorphic processing and vision applications offering several advantages. It is highly desirable to achieve single-element image sensors that allow reception of information and execution of in-memory computing processes while maintaining memory for much longer durations without the need for frequent electrical or optical rehearsals. In this work, ultra-thin (<3 nm) doped indium oxide (In2O3) layers are engineered to demonstrate a monolithic two-terminal ultraviolet (UV) sensing and processing system with long optical state retention operating at 50 mV. This endows features of several conductance states within the persistent photocurrent window that are harnessed to show learning capabilities and significantly reduce the number of rehearsals. The atomically thin sheets are implemented as a focal plane array (FPA) for UV spectrum based proof-of-concept vision system capable of pattern recognition and memorization required for imaging and detection applications. This integrated light sensing and memory system is deployed to illustrate capabilities for real-time, in-sensor memorization, and recognition tasks. This study provides an important template to engineer miniaturized and low operating voltage neuromorphic platforms across the light spectrum based on application demand.  相似文献   
57.
Anionic and cationic redox chemistries boost ultrahigh specific capacities of Li-rich Mn-based oxides cathodes (LRMO). However, irreversible oxygen evolution and sluggish kinetics result in continuous capacity decay and poor rate performance, restricting the commercial fast-charging cathodes application for lithium ion batteries. Herein, the local electronic structure of LRMO is appropriately modulated to alleviate oxygen release, enhance anionic redox reversibility, and facilitate Li+ diffusion via facile surface defect engineering. Concretely, oxygen vacancies integrated on the surface of LRMO reduce the density of states of O 2p band and trigger much delocalized electrons to distribute around the transition metal, resulting in less oxygen release, enhancing reversible anionic redox and the MnO6 octahedral distortion. Besides, partially reduced Mn and lattice vacancies synchronously stimulate the electrochemical activity and boost the electronic conductivity, Li+ diffusion rate, and fast charge transfer. Therefore, the modified LRMO exhibits enhanced cyclic stability and fast-charging capability: a high discharging capacity of 212.6 mAh·g−1 with 86.98% capacity retention after 100 cycles at 1 C is obtained and to charge to its 80%, SOC is shortened to 9.4 min at 5 C charging rate. This work will draw attention to boosting the fast-charging capability of LRMO via the local electronic structure modulation.  相似文献   
58.
Protons in aqueous electrolytes can perform as an additional type of charge carrier for insertion/extraction in addition to the primary carrier cations in aqueous rechargeable batteries. Despite many diverse claims regarding the effect of protons, mutually conflicting experimental results and their interpretations without direct evidence have been reported over the last decade. Systematic examinations and analyses are thus imperative to clarify the conditions of proton insertion in aqueous rechargeable batteries. Utilizing V2O5 as a model cathode and beaker-type cells with a sufficient amount of ZnSO4 aqueous electrolytes in this work, it is demonstrated that protons are inserted into the cathode prior to Zn-ions in low-pH conditions (pH ≤ 3.0). In stark contrast, the influence of protons on the discharge voltage and capacity is insignificant, when either the pH becomes higher (pH ≥ 4.0) or the electrolyte volume is considerably low in coin-type cells. Similar behavior of pH-dependent proton insertion is also verified in Na–, Mg–, and Al-ion electrolytes. Providing a resolution to the controversy regarding proton insertion, the present study emphasizes that the influence of protons substantially varies depending on the pH and relative volume of electrolytes in aqueous batteries.  相似文献   
59.
As one of the high-energy cathode materials of lithium-ion batteries (LIBs), lithium-rich-layered oxide with “single-crystal” characteristic (SC-LLO) can effectively restrain side reactions and cracks due to the reduced inner boundaries and enhanced mechanical stabilities. However, there are still high challenges for SC-LLO with diverse performance requirements, especially on their cycle stability improvement. Herein, a novel concentration gradient “single-crystal” LLO (GSC-LLO), with gradually decreasing Mn and increasing Ni contents from center to surface, is designed and prepared by combining co-precipitation and molten-salt sintering methods, yielding a capacity retention of 97.6% and an energy density retention of 95.8% within 100 cycles at 0.1 C. The enhanced performance is mostly attributed to the gradient-induced stabilized structure, free of cracks and less spinel-like structure formation after long-term cycling. Furthermore, the gradient design is also beneficial to the safety of LLOs as suggested by the improved thermal stability and reduced gas release. This study provides an effective strategy to prepare high-energy, high-stability, and high-safety LLOs for advanced LIBs.  相似文献   
60.
Following logic in the silicon semiconductor industry, the existence of native oxide and suitable fabrication technology is essential for 2D semiconductors in planar integronics, which are surface-sensitive to typical coating technologies. To date, very few types of integronics are found to possess this feature. Herein, the 2D Bi2O2Te developed recently is reported to possess large-area synthesis and controllable thermal oxidation behavior toward single-crystal native oxides. This shows that surface-adsorbed oxygen atoms are inclined to penetrate across [Bi2O2]n2n+ layers and bond with the underlying [Te]n2n− at elevated temperatures, transforming directly into [TeO4]n2n− with the basic architecture remaining stable. The oxide can be adjusted to form in an accurate layer-by-layer manner with a low-stress sharp interface. The native oxide Bi2TeO6 layer (bandgap of ≈2.9 eV) exhibits visible-light transparency and is compatible with wet-chemical selective etching technology. These advances demonstrate the potential of Bi2O2Te in planar-integrated functional nanoelectronics such as tunnel junction devices, field-effect transistors, and memristors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号