首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2219篇
  免费   224篇
  国内免费   96篇
化学   2001篇
晶体学   10篇
力学   27篇
综合类   2篇
数学   9篇
物理学   263篇
无线电   227篇
  2024年   5篇
  2023年   29篇
  2022年   38篇
  2021年   67篇
  2020年   72篇
  2019年   77篇
  2018年   75篇
  2017年   95篇
  2016年   125篇
  2015年   111篇
  2014年   123篇
  2013年   258篇
  2012年   117篇
  2011年   147篇
  2010年   143篇
  2009年   153篇
  2008年   179篇
  2007年   137篇
  2006年   146篇
  2005年   141篇
  2004年   104篇
  2003年   95篇
  2002年   50篇
  2001年   20篇
  2000年   9篇
  1999年   6篇
  1998年   7篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
排序方式: 共有2539条查询结果,搜索用时 15 毫秒
111.
Multi‐walled carbon nanotubes (MWCNTs)‐core/thiophene polymer‐sheath composite nanocables were synthesized by chemical oxidative polymerization of 3,4‐ethylenedioxythiophene (EDOT) with oxidant (FeCl3) in the presence of cationic surfactant, deceyltrimethyl ammonium bromide (DTAB). In the polymerization process, DTAB surfactant molecules were adsorbed on the surface of MWCNTs and forms MWCNTs‐DTAB soft template. Upon the addition of EDOT and oxidant, the polymerization take place on the surface of MWCNTs and PEDOT is gradually deposited on the surface of MWCNTs. The resulting MWCNTs‐PEDOT nanocomposites have the nanocable structure. Nanocomposites were characterized by HRTEM, FE‐SEM, XRD, XPS, TGA, FTIR and PL, respectively. The π‐π interactions between PEDOT and MWCNTs enhancing the thermal and electrical properties of the nanocomposites with loading of MWCNTs. The temperature dependence conductivity measurements show that the conductivity of the nanocomposite decrease with a decrease of temperature, and conductivity‐temperature relationship is well fit by the quasi‐one dimensional variable range hopping mode. The mechanism for the formation of composite nanocables was explained on the basis of self‐ assembly of micelles. The reported self‐assembly strategy for the synthesis of PEDOT‐coated MWCNTs in micellar medium is a rapid, versatile, potentially scalable, stable, and making it useful for further exploitation in a varies types of applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1477–1484, 2010  相似文献   
112.
A set of poly(propylene) composites containing different amounts of copper nanoparticles (CNP) were prepared by the melt mixed method and their antimicrobial behavior was quantitatively studied. The time needed to reduce the bacteria to 50% dropped to half with only 1 v/v % of CNP, compared to the polymer without CNP. After 4 h, this composite killed more than 99.9% of the bacteria. The biocide kinetics can be controlled by the nanofiller content; composites with CNP concentrations higher than 10 v/v % eliminated 99% of the bacteria in less than 2 h. X‐ray photoelectron spectroscopy did not detect CNP at the surface, therefore the biocide behavior was attributed to copper in the bulk of the composite.

  相似文献   

113.
A polystyrene‐block‐poly(2‐vinylpyridine) (PS‐b‐P2VP) micellar structure with a P2VP core containing 5 nm CdS nanoparticles (NPs) and a PS shell formed in toluene that is a good solvent for PS block undergoes the core‐shell inversion by excess addition of methanol that is a good solvent for P2VP block. It leads to the formation of micellar shell‐embedded CdS NPs in the methanol major phase. The spontaneous crystalline growth of Au NPs on the CdS surfaces positioned at micellar shells without a further reduction process is newly demonstrated. The nanostructure of Au/CdS/PS‐b‐P2VP hybrid NPs is confirmed by transmission electron microscopy, energy‐dispersive X‐ray, and UV‐Vis absorption.

  相似文献   

114.
Flammability of epoxy appears to be one of the greatest threats and hence limits its advanced applications. The present investigation, therefore, reports on vegetable oil-based self-extinguishing epoxy/clay nanocomposites for the first time. These nanocomposites were prepared by the ex-situ technique using mechanical shearing and ultrasonication at different loadings (1, 2.5 and 5 wt%) of nano-clay. Monoglyceride of Mesua ferrea L. seed oil, bisphenol-A and tetrabromobisphenol-A based epoxy resin was used as the matrix. XRD, TEM, SEM, FTIR and rheological studies confirmed partially exfoliated nanocomposites formation. The study demonstrates two fold improvements of tensile strength and scratch hardness, three-fold increase in adhesive strength and 20 units increase in gloss value without any change in impact resistance through nanocomposite formation. TG studied confirmed the enhancement of thermal stability of the nanocomposite by 25 °C. The limiting oxygen index values and UL 94 test indicated the self-extinguishing characteristic of the nanocomposites.  相似文献   
115.
夏晓东  易平贵  于贤勇 《应用化学》2009,26(12):1456-1460
制备了Ag@SiO2纳米复合物,罗丹明B通过物理掺杂结合在SiO2壳层。由于金属增强荧光效应,罗 丹明B的荧光增强到4.7倍。Ag核易被H2O2氧化,Ag核氧化后产生荧光增强释放效应。基于金属增强荧光 释放建立了一种新型葡萄糖检测方法,采用交联法在罗丹明B掺杂的Ag@SO2纳米复合物的SiO2壳层固定 葡萄糖氧化酶。检测浓度范围为0.2~6.8 mmol/L,检测限可达0.06 mmol/L。由于H2O2氧化Ag核反应迅 速,检测体系对葡萄糖的响应快速。  相似文献   
116.
The effect of multiple extrusions on nanostructure and properties of nylon 6 nanocomposites was investigated. Nanocomposites at different silicate loadings were produced by melt compounding and submitted to further reprocessing by using single and twin screw extruders. Rheological, morphological and mechanical analyses were carried out on as-produced and reprocessed samples in order to explore the influence of the number and the type of extrusion cycles on silicate nanodispersion.Rheological measurements, correlated to TEM analyses, were used to probe the nanoscale arrangement developed with the reprocessing as well as the thermo-mechanical degradation involving both the neat matrix and the organoclay. The results have shown that the reprocessing by single screw extruder can modify the initial morphology since the re-agglomeration of the silicate layers can occur. On the other hand, a better nanodispersion was observed in the hybrids reprocessed by twin screw extruder. This was attributed to the additional mechanical stresses able to realizing a dispersive mixing that contributes to avoid re-agglomeration phenomena. The high shear stresses produced with twin screw geometry determined also a significant degradation of neat matrix, principally based on chain scission mechanism.A strong correlation between the rheological behaviour and mechanical properties was observed and all as-produced and reprocessed hybrids showed a substantial enhancement in tensile modulus with the adding of silicate. However, the entity of performance enhancements displayed by the reprocessed hybrids was found to be highly dependent on the degradation of both organoclay and polymer matrix as well as the silicate amount, the number and the type reprocessing.  相似文献   
117.
The role of the aspect ratio of the layered silicate platelets on the mechanical and oxygen permeation properties of hydrogenated nitrile rubber (HNBR)/organophilic layered silicate nanocomposites was investigated. Montmorillonite (MMT) and fluorohectorite (FHT) bearing the same type of intercalant (i.e., octadecylamine; ODA), however, showing different aspect ratio was involved in this study. The dispersion of the layered silicates was assessed by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. Increasing aspect ratio (MMT < FHT) resulted in higher stiffness under uniaxial tensile loading. The dispersion state (“secondary structure”) of the organophilic layered silicates reduced dramatically the oxygen permeability of the rubber matrix based on the labyrinth principle. The lowest oxygen permeability was measured for the HNBR/FHT-ODA films in which the layered silicates had the highest aspect ratio. By varying the FHT-ODA volume fraction in the latter compound the mechanical and permeation properties were measured and modelled. It was found that the modified Guth’s and Nielsen’s equations predicted accurately the mechanical and permeation responses, respectively.  相似文献   
118.
Ethylene-acrylic acid copolymers (EAAs) and commercial montmorillonite clays organically modified with dimethyldihydrogenatedtallowammonium ions (Cloisite® 15A and 20A) were used for the synthesis of nanocomposites by melt-compounding, static melting of polymer/clay mixtures and solution-intercalation in order to compare the effectiveness of these procedures and to shed light on the thermodynamics and the kinetics of the intercalation process. The preparation from solution was made by the use of several solvents, such as toluene, xylene, chloroform, etc., which were then removed from the hybrids by precipitation in different non-solvents or by evaporation. Particular attention was paid to the effect of the thermal treatments which are often used when processing the composites prepared from solution. X-ray diffraction (XRD) of the solution-blended composites showed that no intercalation of the EAAs inside the clay galleries can be achieved if solvent removal is made by precipitation in non-solvents or by room-temperature evaporation. On the contrary, intercalation was found to occur very rapidly (in less than 1 min) when both the hybrids prepared from solution and the mechanical blends of powdered components were melted in the absence of shear. Polymer intercalation was also found to occur, though with a lower rate, upon annealing the powder mixtures at temperatures lower than the EAA melting point. Microscopic observations made by polarized optical microscopy, scanning electron microscopy and transmission electron microscopy showed that the clay particles dispersion is appreciably lower for the composites prepared from solution, compared to those produced in the melt under shear flow conditions. The hybrids obtained by static melting of powder mixtures, on the other side, were expectedly found to comprise micron sized clay agglomerates, although intercalation was demonstrated also for these materials by XRD. The structure of the intercalated silicate layers stacks, characterized by an interlayer spacing of 4.0 nm, was shown to be independent of the preparation procedure and to correspond to thermodynamic equilibrium.  相似文献   
119.
Nanoribbon‐shaped nanocomposites composed of conjugated polymer poly(3‐hexylthiophene) (P3HT) nanoribbons and plasmonic gold nanorods (AuNRs) were crafted by a co‐assembly of thiol‐terminated P3HT (P3HT‐SH) nanofibers with dodecanethiol‐coated AuNRs (AuNRs‐DDT). First, P3HT‐SH nanofibers were formed due to interchain π–π stacking. Upon the addition of AuNRs‐DDT, P3HT‐SH nanofibers were transformed into nanoribbons decorated with the aligned AuNRs on the surface (i.e., nanoribbon‐like P3HT/AuNRs nanocomposites). Depending on the surface coverage of the P3HT nanoribbons by AuNRs, these hierarchically assembled nanocomposites exhibited broadened and red‐shifted absorption bands of AuNRs in nIR region due to the plasmon coupling of adjacent aligned AuNRs and displayed quenched photoluminescence of P3HT. Such conjugated polymer/plasmonic nanorod nanocomposites may find applications in fields, such as building blocks for complex superstructures, optical biosensors, and optoelectronic devices.  相似文献   
120.
Multi-scale hybrid nanocomposites containing both ∼15 nm silica colloids and ∼2 nm oligosiloxanes in a methacryl polymer matrix were newly designed and fabricated. Colloidal silica sols were dispersed in methacryl oligosiloxanes nano-hybrid resins synthesized by sol-gel reaction of methacryloxypropylmethoxysilane and diphenylsilanediol. On the basis of TEM and SANS analyses, it was confirmed that the silica colloids were compatibly dispersed and different sizes of colloidal silica and oligosiloxanes co-exist in the solutions. Multi-scale hybrid nanocomposites fabricated by UV and thermal curing with incorporation of silica colloids in the nano-hybrid materials show enhanced mechanical and thermal characteristics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号