首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10691篇
  免费   1373篇
  国内免费   189篇
化学   1473篇
晶体学   11篇
力学   147篇
综合类   55篇
数学   1696篇
物理学   1816篇
无线电   7055篇
  2024年   32篇
  2023年   186篇
  2022年   268篇
  2021年   316篇
  2020年   320篇
  2019年   233篇
  2018年   259篇
  2017年   324篇
  2016年   450篇
  2015年   407篇
  2014年   655篇
  2013年   810篇
  2012年   697篇
  2011年   636篇
  2010年   616篇
  2009年   660篇
  2008年   675篇
  2007年   756篇
  2006年   556篇
  2005年   498篇
  2004年   404篇
  2003年   389篇
  2002年   326篇
  2001年   302篇
  2000年   245篇
  1999年   198篇
  1998年   159篇
  1997年   159篇
  1996年   151篇
  1995年   130篇
  1994年   105篇
  1993年   71篇
  1992年   64篇
  1991年   42篇
  1990年   25篇
  1989年   28篇
  1988年   24篇
  1987年   12篇
  1986年   11篇
  1985年   20篇
  1984年   12篇
  1983年   3篇
  1982年   7篇
  1981年   6篇
  1980年   2篇
  1978年   1篇
  1974年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Summary: A controlled fabrication of rod‐like nanostructures of cadmium sulfide (CdS) incorporated into polymer fiber matrices has been developed by an electrospinning method. Here, poly(vinyl pyrrolidone) (PVP) was used as a polymer capping reagent, utilizing the interactions of cadmium ions with the carbonyl groups in the PVP molecules. The formation of CdS nanorods inside the PVP was carried out via the reaction of Cd2+ with H2S. SEM images showed that the electrospun films of PVP/CdS are composed of fibers with a diameter between 100 and 900 nm. TEM proved that most of the CdS nanorods are incorporated in the PVP fibrous film. The diameter of the rod is about 50 nm and the length is from 100 to 300 nm.

TEM image of the CdS nanorods formed in the PVP fibrous film.  相似文献   

92.
93.
Cross-linked epoxy matrices containing small amounts of semi-conductive phthalocyanine (Phthalcon) nanoparticles were prepared using different crosslinking agents and processing temperatures. A starting mixture containing an optimum dispersion of these nanoparticles and with an almost equal and large Hamaker constant was always used. Nevertheless large differences in the relation between the volume conductivity σv and the particle concentration φ were found and this relation appeared to be sensitive to small changes in processing temperature and the application of a post-cure. Also the amine crosslinker chosen and the initial amount of solvent (catalyst) in the starting dispersion had a major effect. It was shown that these changes influence strongly the formation of and the final conductive fractal particle network morphology through the polymer matrix. During processing a local relaxation of the initially formed fractal particle network into another fractal particle network was often observed, which introduced or enlarged the amount of isolating material between the particles of the conductive network and changed the fractality and structure of the conductive backbone of the particle network. This local relaxation lowered the σv at each phthalcon concentration and enlarged φc by several orders of magnitude. The occurrence of local relaxation is dependent on the rate of viscosity change during the crosslinking of the polymer matrix components, the way the fractal conductive particle network is formed during processing (universal or non-universal) and the amount of solvent present. Local relaxation may even occur after the gel point of the polymer matrix. A severe post-cure may be needed to stop this local relaxation. To our knowledge local relaxation of a (fractal) nanoparticle network in a polymer matrix during processing is a new phenomenon, not reported before for polymer composites containing (conductive) nanoparticles.  相似文献   
94.
95.
Measurements of the equilibrium degree of swelling and of the equilibrium modulus were performed on poly(dimethylsiloxane) networks (PDMS) and on polyisoprene vulcanizates. The results support the concept that topological interactions between network chains, e.g. entanglements or the like, have a large influence on the rubber elastic behavior, at least within a certain range of network densities.PDMS networks having network chains of different lengths and varying functionlities of the crosslinks were prepared in bulk by endlinking fractionated ,-divinyl PDMS via multifunctional hydrogen-siloxanes (f=3 to 22). Natural rubber (NR) and synthetic liquid polyisoprene (IR) were cured in bulk with various amounts of dicumyl peroxide to give randomly crosslinked samples.The experimentally determined moduli and degrees of swelling were compared with theoretical predictions based on the phantom network theory and affine network theory, taking into account only chemical crosslinks. The observed discrepancies can be traced back to a contribution of topological interactions (trapped entanglements) to the total effective network density. The modulus and swelling data are consistent, thus ruling out non-equilibrium effects.  相似文献   
96.
Thermally curable interpenetrating networks employing short and long chain components were successfully prepared via the sol-gel route. Their mechanical properties were assessed and correlated to their composition and structure. The role of the organic cross-links was found to be a larger determinant of the mechanical properties than the inorganic network. Their low frequency dielectric properties were investigated and found to be comparable to those of conventional encapsulation materials. Observed mass losses at 523 K ranged between 3–5% after 1000 minutes, the suspected mechanism being the development of organic cross-links.  相似文献   
97.
1-(2-Pyridyl)benzotriazole (L1) and 1-(4-pyridyl)benzotriazole (L2) with transition metal cations Co(II), Ni(II) and Cu(II) give four coordination complexes, [{Cu(L1)2(H2O)2} · 2NO3] (1), [{Co(L1)2(H2O)2} · 2NO3] (2), [Ni(L2)2(NO3)2(H2O)2] (3), and [Cu2(L2)2(CH3COO)4] (4). In 14, different supramolecular frameworks are formed through hydrogen bonding and/or π–π interactions.  相似文献   
98.
99.
100.
Thin‐film polymer solar cell consisting of [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) and poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]] (PTB7) demonstrates elastic stretchability with the aid of a high boiling point additive, 1,8‐diiodooctane (DIO). The usage of DIO not only helps to form uniformly distributed nanocrystalline grains, but may also create free volumes between the nano‐grains that allow for relative sliding between the nano‐grains. The relative sliding can accommodate large external deformation. Large dichroic ratios of the optical absorption of both PC71BM and PTB7 were observed under large‐strain deformation, indicating reorientation of the nanocrystalline PC71BM and PTB7 polymer chains along stretching direction. The dichroic ratio decreases to nearly 1.0 as the blend was relaxed to 0% strain. Therefore, the nanometer‐size grain blending morphology provides an approach to impart stretchability to organic semiconductors that are otherwise un‐stretchable. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 814–820  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号