首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5500篇
  免费   1204篇
  国内免费   892篇
化学   1363篇
晶体学   59篇
力学   339篇
综合类   61篇
数学   197篇
物理学   1101篇
无线电   4476篇
  2024年   45篇
  2023年   124篇
  2022年   169篇
  2021年   187篇
  2020年   212篇
  2019年   226篇
  2018年   205篇
  2017年   243篇
  2016年   296篇
  2015年   323篇
  2014年   397篇
  2013年   540篇
  2012年   426篇
  2011年   472篇
  2010年   389篇
  2009年   390篇
  2008年   342篇
  2007年   365篇
  2006年   318篇
  2005年   267篇
  2004年   255篇
  2003年   251篇
  2002年   186篇
  2001年   161篇
  2000年   144篇
  1999年   114篇
  1998年   76篇
  1997年   61篇
  1996年   60篇
  1995年   60篇
  1994年   50篇
  1993年   33篇
  1992年   33篇
  1991年   34篇
  1990年   27篇
  1989年   22篇
  1988年   21篇
  1987年   21篇
  1986年   9篇
  1985年   5篇
  1984年   7篇
  1983年   9篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   7篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1957年   1篇
排序方式: 共有7596条查询结果,搜索用时 15 毫秒
141.
In the coordination chemistry of palladium, dimers bridged via halides are a common motif. Higher oligomers, however, are still rare. We report the structure of an alternating eight‐membered [Pd4Br4]4− ring framed by cycloheptatrienide ligands, which was obtained by cocrystallization of dimers and tetramers of the complex salt bromido{η3‐[3‐(2,6‐diisopropylphenyl)imidazolium‐1‐yl]cycloheptatrienido}palladium(II) tetrafluoroborate, namely bis[di‐μ‐bromido‐bis({η3‐[3‐(2,6‐diisopropylphenyl)imidazolium‐1‐yl]cycloheptatrienido}palladium(II))] cyclo‐tetra‐μ‐bromido‐tetrakis({η3‐[3‐(2,6‐diisopropylphenyl)imidazolium‐1‐yl]cycloheptatrienido}palladium(II)) octakis(tetrafluoroborate) dichloromethane octasolvate, [Pd4Br4(C22H26N2)4][Pd2Br2(C22H26N2)2]2(BF4)8·8CH2Cl2. These dimers and tetramers form a highly dynamic equilibrium in solution which was studied by low‐temperature NMR spectroscopy. In the light of the presented results, tetrameric PdII species can be assumed to co‐exist as a second species in many cases where by current knowledge only a dimeric compound would be expected.  相似文献   
142.
143.
Phototherapeutic applications of carbon monoxide (CO)-releasing molecules are limited because they require harmful UV and blue light for activation. We describe two-photon excitation with NIR light (800 nm)-induced CO-release from two MnI tricarbonyl complexes bearing 1,8-naphthalimide units ( 1 , 2 ). Complex 2 behaves as a logic OR gate in solution, nonwovens, and in HeLa cells. CO release, indicated by fluorescence enhancement, was detected in solution, nonwoven, and HeLa cells by single- (405 nm) and two-photon (800 nm) excitation. The photophysical properties of 1 and 2 have been measured and supported by DFT and TDDFT quantum chemical calculations. Both photoCORMs are stable in the dark in solution and noncytotoxic, leading to promising applications as phototherapeutics with NIR light.  相似文献   
144.
With more than 40 years Moore scaling, the speed of CMOS transistors is around 100 GHz. Such fact makes it possible to realize mm-wave circuits in CMOS. However, with the target of achieving broadband and power-efficient operation, 60 GHz CMOS RF transceiver faces severe challenges. After reviewing the technology issues, regarding the 60 GHz applications, this paper discusses design challenges both from the system and the building block levels, and also presents some simulated or measured circuits results.  相似文献   
145.
146.
At low Mach numbers, Godunov‐type approaches, based on the method of lines, suffer from an accuracy problem. This paper shows the importance of using the low Mach number correction in Godunov‐type methods for simulations involving low Mach numbers by utilising a new, well‐posed, two‐dimensional, two‐mode Kelvin–Helmholtz test case. Four independent codes have been used, enabling the examination of several numerical schemes. The second‐order and fifth‐order accurate Godunov‐type methods show that the vortex‐pairing process can be captured on a low resolution with the low Mach number correction applied down to 0.002. The results are compared without the low Mach number correction and also three other methods, a Lagrange‐remap method, a fifth‐order accurate in space and time finite difference type method based on the wave propagation algorithm, and fifth‐order spatial and third‐order temporal accurate finite volume Monotone Upwind Scheme for Conservation Laws (MUSCL) approach based on the Godunov method and Simple Low Dissipation Advection Upstream Splitting Method (SLAU) numerical flux with low Mach capture property. The ability of the compressible flow solver of the commercial software, ANSYS FLUENT , in solving low Mach flows is also demonstrated for the two time‐stepping methods provided in the compressible flow solver, implicit and explicit. Results demonstrate clearly that a low Mach correction is required for all algorithms except the Lagrange‐remap approach, where dissipation is independent of Mach number. © 2013 Crown copyright. International Journal for Numerical Methods in Fluids. © 2013 John Wiley & Sons, Ltd.  相似文献   
147.
Manganese‐ and cerium oxide‐modified titania catalysts were prepared by the deposition precipitation for the removal of elemental mercury (Hg0) from simulated yellow phosphorus off‐gas at low temperature. In addition, these catalysts were characterized by X‐ray diffraction, Brunauer–Emmett–Teller measurements, X‐ray photoelectron spectroscopy and field‐emission scanning electron microscope to determine the surface morphology of the obtained compounds and explore their formation mechanism. The results revealed that a Mn–Ce loading and reaction temperature of 10% and 150 °C, respectively, as well as a Mn/Ce molar ratio of 2:1, led to an optimal efficiency for the oxidation of elemental mercury. Furthermore, the effects of flue gas components were investigated. The presence of O2 clearly promoted the oxidation of Hg0. A CO atmosphere did not affect the Hg0 oxidation, when compared with N2, whereas the presence of H2S and water vapor inhibited the oxidation process. Furthermore, the X‐ray photoelectron spectroscopy spectra of Hg 4f revealed that the elemental mercury adsorbed by the catalyst is present as HgO. Finally, the Hg0 catalytic oxidation mechanism was discussed on the basis of the experimental results and characterization analysis.  相似文献   
148.
As Reduced Activation Ferritic/Martensitic (RAFM) steel is considered the primary candidate for use as a structural material in fusion power reactors,many countries are developing different kinds of RAFM.China is developing new CLAM (China Low Activation Martensitic) steel.The study investigates microstructural changes in CLAM steel implanted with deuterium ions induced by 1250 keV electron irradiation from R.T.to 873 K,and observes both the growth and shrinkage of the defect clusters produced by deuterium ...  相似文献   
149.
Titanium tetrachloride in ethyl acetate can be reduced by Mg powder to the corresponding low‐valent titanium complexes, which can reduce some aromatic aldehydes and ketones to the corresponding pinacols in 38–85% yields within 15–60 min at rt with stirring.  相似文献   
150.
The three-dimensional discrete cosine transform (3D-DCT) has been researched as an alternative to existing dominant video standards based on motion estimation and compensation. Since it does not need to search macro block for inter/intra prediction, 3D-DCT has great advantages for complexity. However, it has not been developed well because of poor video quality while video standards such as H.263(+) and HEVC have been blooming. In this paper, we propose a new 3D-DCT video coding as a new video solution for low power mobile technologies such as Internet of Things (IoT) and Drone. We focus on overcoming drawbacks reported in previous research. We build a complete 3D-DCT video coding system by adopting existing advanced techniques and devising new coding algorithms to improve overall performance of 3D-DCT. Experimental results show proposed 3D-DCT outperforms H.264 low power profiles while offering less complexity. From GBD-PSNR, proposed 3D-DCT provides better performance by average 4.6 dB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号