首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14829篇
  免费   676篇
  国内免费   605篇
化学   7076篇
晶体学   137篇
力学   725篇
综合类   5篇
数学   4030篇
物理学   2618篇
无线电   1519篇
  2024年   159篇
  2023年   973篇
  2022年   518篇
  2021年   763篇
  2020年   1695篇
  2019年   1199篇
  2018年   1069篇
  2017年   879篇
  2016年   961篇
  2015年   833篇
  2014年   1056篇
  2013年   3239篇
  2012年   689篇
  2011年   179篇
  2010年   135篇
  2009年   128篇
  2008年   179篇
  2007年   169篇
  2006年   145篇
  2005年   198篇
  2004年   192篇
  2003年   140篇
  2002年   81篇
  2001年   61篇
  2000年   63篇
  1999年   35篇
  1998年   50篇
  1997年   30篇
  1996年   45篇
  1995年   41篇
  1994年   37篇
  1993年   25篇
  1992年   29篇
  1991年   15篇
  1990年   9篇
  1989年   4篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   5篇
  1982年   9篇
  1981年   11篇
  1980年   6篇
  1979年   7篇
  1978年   7篇
  1977年   7篇
  1975年   4篇
  1974年   4篇
  1973年   4篇
  1972年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Smart hybrids of Zn2GeO4 nanoparticles and ultrathin g‐C3N4 layers (Zn2GeO4/g‐C3N4 hybrids) are realized by a facile solution approach, where g‐C3N4 layers act as an effective substrate for the nucleation and subsequent in situ growth of Zn2GeO4 nanoparticles. A synergistic effect is demonstrated on the two building blocks of Zn2GeO4/g‐C3N4 hybrids for lithium storage: Zn2GeO4 nanoparticles contribute high capacity and serve as spacers to isolate the ultrathin g‐C3N4 layers from restacking, resulting in expanded interlayer and exposed vacancies with doubly bonded nitrogen for extra Li‐ion storage and diffusion pathway; 2D g‐C3N4 layers, in turn, minimize the strain of particles expansion and prevent the formation of unstable solid electrolyte interphase, leading to highly reversible lithium storage. Benefiting from the remarkable synergy, the Zn2GeO4/g‐C3N4 hybrids exhibit highly reversible capacity of 1370 mA h g?1 at 200 mA g?1 after 140 cycles and excellent rate capability of 950 mA h g?1 at 2000 mA g?1. The synergistic effect originating from the hybrids brings out excellent electrochemical performance, and thus casts new light on the development of high‐energy and high‐power anode materials.  相似文献   
52.
Possibility of improving the bias stress stability of amorphous In–Ga–Zn–O thin film transistors (a-IGZO TFTs) was explored by irradiating the channel/dielectric interface with ultraviolet (UV) light during the device fabrication process. The UV treatment of the channel/dielectric interface did not cause significant changes in the device performance itself. However, when the TFTs were tested under prolonged gate bias stress, the device with longest UV treatment showed the smallest time dependence of threshold voltage shift. This accompanied the smallest changes in the field effect mobility and subthreshold swing with extended bias stress. Such improvements in bias stress stability are attributed to the modification of the channel/dielectric interface due to the UV-generated ozone that in turn decreased the interface trap density and structurally modified the interface region on the dielectric side to prevent the redistribution of the trapped charges.  相似文献   
53.
NiO is a p-type semiconductor with wide band gap energy. In this study, nickel oxide nanofibers were fabricated by sol–gel electrospinning followed by high temperature calcination, using two sacrificial polymeric binders. Poly(2-ethyl-2-oxazoline) (PEtOx) in water and styrene-acrylonitrile random copolymer (SAN) in N,N- dimethylformamide (DMF) along with nickel (II) acetate tetrahydrate (NATH), as metal oxide precursor, were the two distinct polymeric systems used in this study. The morphological and structural properties of NiO fibers obtained from the aforementioned systems were compared with each other. The degradation behavior of the sacrificial polymeric binder imparted a significant effect on the properties of the obtained NiO fibers. The grain sizes and the activation energies for grain growth of NiO fibers from two systems were different. The non-stoichiometric NiO fibers obtained from the SAN/NATH system had a better ferromagnetic behavior as compared with that produced from the PEtOx/NATH system. This non-stoichiometry made a difference also in the optical band gap energies of the NiO nanofibers.  相似文献   
54.
High quality BaWO4 thin films are successfully deposited on quartz substrate for a duration of 30 min using pulsed laser ablation technique and using a laser radiation of wavelength 355 nm and the effect of thermal annealing on the structural and optical properties is studied by using techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy, micro-Raman, FTIR and UV–visible spectroscopy. All the films show monoclinic crystalline structure with (2 0 2) plane as the preferred orientation of crystal growth. From the XRD analysis it is found that the optimum annealing temperature for better crystallization of the BaWO4 film is 700 °C and there is no phase change observed with annealing temperature. The presence of the characteristic bands for the BaWO4 in the Raman spectra of the films suggests the formation of BaWO4 crystalline phase in all the films. SEM and AFM analyses show that as the annealing temperature increases the connectivity between individual grains increases and shows an ordered packing. The geometrical optimization and energy calculation of the title compound were done using the Gaussian 09 software package and the calculations were carried out using the CAM-B3LYP functional combined with standard Lanl2Dz basis set. The thickness of the films was calculated using lateral SEM images and also from optical transmission spectral data using PUMA software.  相似文献   
55.
Glioblastoma (GBM) is the most prevailing malignant primary brain tumor, and the precise diagnosis of GBM has always been a challenge. Gboxin is a recently developed drug efficiently inhibiting the oxidative phosphorylation in GBM cells, and both the chlorotoxin (CLTX) and GBM cell membrane coating are capable of GBM targeting and tumor homing. Herein, the near-infrared (NIR) persistent luminescence (PL) nanoparticle, CUDZG, with a dual function of imaging and therapy is developed based on ZnGa2O4:Cr3+,Sn4+. CUDZG exhibits superior rechargeable NIR PL for at least 48 h with excellent tissue penetration in vivo, which enables the longstanding autofluorescence-free imaging of the orthotopic GBM. The tumor growth of both the orthotropic and subcutaneous GBM-bearing mice are significantly suppressed by CUDZG. This is the first-time report of 1) the integration of CLTX and cell membrane coating for drug delivery, 2) diselenide-based trigger release for anti-GBM therapy, and 3) the systemic delivery of Gboxin. This study also offers an example of the highly promising blood-brain penetrable drug carriers for precise diagnosis and therapy of central nervous system diseases.  相似文献   
56.
For the development of all-solid-state lithium metal batteries (LMBs), a high-porous silica aerogel (SA)-reinforced single-Li+ conducting nanocomposite polymer electrolyte (NPE) is prepared via two-step selective functionalization. The mesoporous SA is introduced as a mechanical framework for NPE as well as a channel for fast lithium cation migration. Two types of monomers containing weak-binding imide anions and Li+ cations are synthesized and used to prepare NPEs, where these monomers are grafted in SA to produce SA-based NPEs (SANPEs) as ionomer-in-framework. This hybrid SANPE exhibits high ionic conductivities (≈10−3 S cm−1), high modulus (≈105 Pa), high lithium transference number (0.84), and wide electrochemical window (>4.8 V). The resultant SANPE in the lithium symmetric cell possesses long-term cyclic stability without short-circuiting over 800 h under 0.2 mA cm−2. Furthermore, the LiFePO4|SANPE|Li solid-state batteries present a high discharge capacity of 167 mAh g−1 at 0.1 C, good rate capability up to 1 C, wide operating temperatures (from −10 to 40 °C), and a stable cycling performance with 97% capacity retention and 100% coulombic efficiency after 75 cycles at 1 C and 25 °C. The SANPE demonstrates a new design principle for solid-state electrolytes, allowing for a perfect complex between inorganic silica and organic polymer, for high-energy-density LMBs.  相似文献   
57.
Rational design of promising electrolyte is considered as an effective strategy to improve the cycling stability of lithium metal batteries (LMBs). Here, an elaborately designed ionic liquid-based electrolyte is proposed that is composed of lithium bis(trifluoromethanesulfonyl)imide as the lithium salt, 1-ethyl-3-methylimidazolium nitrate ionic liquid ([EMIm][NO3] IL) and fluoroethylene carbonate (FEC) as the functional solvents, and 1,2-dimethoxyethane (DME) as the diluent solvent. Using [EMIm][NO3] IL as the solvent component facilitates a special Li+-coordinated NO3 solvation structure, which enables the continues electrochemical reduction of solvated NO3 and the formation of remarkably stable and conductive solid electrolyte interface. With FEC as another functional solvent and DME as the diluent solvent, the formulated electrolyte delivers high oxidative stability and ionic conductivity, and endows improved electrochemical reaction kinetics. Therefore, the formulated electrolyte demonstrates exceedingly reversible and stable Li stripping/plating behavior with high average Coulombic efficiency (98.8%) and ultralong cycling stability (3500 h). Notably, the high-voltage Li|LiNi0.8Co0.1Mn0.1O2 full cell with IL-based electrolyte exhibits enhanced cyclability with a capacity retention of 65% after 200 cycles under harsh conditions of low negative/positive ratio (3.1) and lean electrolyte (2.5 µL mg−1). This study creates the first NO3-based ionic liquid electrolyte and evokes the avenue for practical high-voltage LMBs.  相似文献   
58.
By using the more electro-negative Mn3+ ion to partially replace Co3+ at the octahedral site of spinel ZnCo2O4, i.e., forming ternary Zn–Mn–Co spinel oxide, the electrocatalytic oxygen reduction/evolution activity is found to be significantly increased. Considering the physical characterization and theoretical calculations, it demonstrated that the bond competition played a key role in regulating the cobalt valence state and the electrocatalytic activity. The partial replacement of octahedral-site-occupied Co3+ by Mn3+ can effectively modulate the adjacent Co–O bond and induce the Jahn–Teller effect, thus changing the originally stable crystal structure and optimizing the binding strength between the active center and reaction intermediates. Certainly, the Mn-substituted ZnMn1.4Co0.6O4/NCNTs exhibit higher electrocatalytic oxygen reduction reaction (ORR) activity than that of ZnCo2O4/NCNTs and ZnMn2O4/NCNTs, supporting that the Co–O bond covalency determines the ORR activity of spinel ZnCo2O4. This study offers the competition between adjacent Co–O and Mn–O bonds via the BOh–O–BOh edge-sharing geometry. The ion substitution at octahedral sites by less electronegative cations can be a new and effective way to improve the electrocatalytic performance of cobalt-based spinel oxides.  相似文献   
59.
Nex-generation high-energy-density storage battery, assembled with lithium (Li)-metal anode and nickel-rich cathode, puts forward urgent demand for advanced electrolytes that simultaneously possess high security, wide electrochemical window, and good compatibility with electrode materials. Herein an intrinsically nonflammable electrolyte is designed by using 1 M lithium difluoro(oxalato)borate (LiDFOB) in triethyl phosphate (TEP) and N-methyl-N-propyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide [Pyr13][TFSI] ionic liquid (IL) solvents. The introduction of IL can bring plentiful organic cations and anions, which provides a cation shielding effect and regulates the Li+ solvation structure with plentiful Li+-DFOB and Li+-TFSI complexes. The unique Li+ solvation structure can induce stable anion-derived electrolyte/electrode interphases, which effectively inhibit Li dendrite growth and suppress side reactions between TEP and electrodes. Therefore, the LiNi0.9Co0.05Mn0.05O2 (NCM90)/Li coin cell with this electrolyte can deliver stable cycling even under 4.5 V and 60 °C. Moreover, a Li-metal battery with thick NCM90 cathode (≈ 15 mg cm−2) and thin Li-metal anode (≈ 50 µm) (N/P ≈ 3), also reveals stable cycling performance under 4.4 V. And a 2.2 Ah NCM90/Li pouch cell can simultaneously possess prominent safety with stably passing the nail penetration test, and high gravimetric energy density of 470 Wh kg−1 at 4.4 V.  相似文献   
60.
A series of (vinylphenyl)pyridine‐based polymer binders, PVPh2Py, PVPh3Py, and PVPh4Py, are designed and synthesized and it is found that mixtures of Liq and the polymers exhibit superior electron injection characteristics as ultrathin (1.6 nm) electron injection layer (EIL) films. They are comparable to those of EILs composed only of Liq. The addition of the polymers does not deteriorate the performance of Liq EILs. Additionally, when the EIL thickness is increased from 1.6 nm to 16 nm, the driving voltages increase and the external quantum efficiencies decrease. The increase in the voltage and decrease in the EQE are suppressed in the device with mixed EILs compared to those observed for the device composed of 100 wt% Liq. Furthermore, the position of the nitrogen in the pyridine ring is considered to influence the electron transport properties of the EILs. The mixing PVPh4Py with Liq improves the driving voltage of the fabricated devices, even with a thick mixed EIL. This reduced dependence of the performance of EILs on their thickness will be advantageous for the coating of large areas using solution processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号