首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   23篇
  国内免费   29篇
化学   265篇
晶体学   1篇
力学   2篇
综合类   1篇
数学   3篇
物理学   12篇
无线电   12篇
  2023年   3篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   8篇
  2018年   5篇
  2017年   10篇
  2016年   16篇
  2015年   11篇
  2014年   9篇
  2013年   21篇
  2012年   11篇
  2011年   5篇
  2010年   4篇
  2009年   13篇
  2008年   12篇
  2007年   14篇
  2006年   13篇
  2005年   14篇
  2004年   15篇
  2003年   12篇
  2002年   4篇
  2001年   8篇
  2000年   8篇
  1999年   7篇
  1998年   7篇
  1997年   7篇
  1996年   22篇
  1995年   7篇
  1994年   3篇
  1993年   9篇
  1992年   6篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
  1980年   1篇
排序方式: 共有296条查询结果,搜索用时 0 毫秒
91.
Semi‐interpenetrating polymer networks (semi‐IPNs) were prepared by reactions of 2,4‐tolylene diisocyanate (TDI) and hydroxy‐terminated 4‐arm star‐shaped l ‐lactide oligomers (H4LAOn's) with the degrees of polymerization of lactate unit per one arm, n = 3, 5, and 10 in the presence of poly(ε‐caprolactone) (PCL). Morphologies, thermal, and mechanical properties of the TDI‐bridged H4LAOn (TH4LAOn)/PCL semi‐IPNs were evaluated by comparing with those of poly(l ‐lactide) (PLA)/PCL blends. Compatibility between the two components of the TH4LAOn/PCL semi‐IPN with a PCL content not more than 50 wt % was much better than those of the PLA/PCL blends with the same PCL content. All the TH4LAOn networks were substantially amorphous and their tan δ peak or glass transition temperatures increased with decreasing n value. Most of the semi‐IPNs did not show clear glass transition temperature related to both the components. Tensile toughness and elongation at break for all the TH4LAOn/PCL semi‐IPNs were much higher than those for the PLA/PCL blends with the same PCL content. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1420–1428  相似文献   
92.
In this work, semi‐interpenetrating gels of poly(N‐isopropyl acrylamide) and methylcellulose were successfully synthesized by using the Frontal Polymerization (FP) technique. The gels were obtained in the presence of dimethyl sulfoxide and trihexyltetradecylphosphonium persulfate, as polymerization solvent and radical initiator, respectively, hence avoiding the formation of bubbles during polymerization. Then, some of the gels containing dimethyl sulfoxide were thoroughly washed with water, hence obtaining the corresponding hydrogels. The effects of the ratio between poly(N‐isopropyl acrylamide) and methylcellulose, the amount of crosslinker and solvent medium (i.e., dimethyl sulfoxide and water) were thoroughly studied, assessing the influence of temperature and velocity of FP fronts on the glass transition temperature values (dried samples), on the swelling behavior and on the dynamic‐mechanical properties (gels swollen both in water and dimethyl sulfoxide). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 437–443  相似文献   
93.
Simultaneous free radical and cationic photopolymerizations of mixtures of multifunctional acrylate and oxetane monomers were carried out to provide hybrid interpenetrating network polymers. The use of “kick‐started” oxetanes in which oxetane monomers are accelerated by the use of small amounts of certain highly substituted epoxides provides dual independent radical and cationic systems with similar rates of photopolymerization leading to homogeneous interpenetrating networks. The combined photopolymerizations are very rapid and afford crosslinked network films that are colorless, hard, and transparent. The networks display no indications of phase separation. The use of this technology in various applications such as coatings, 3D imaging, and for composites is discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 594–601  相似文献   
94.
In this study, (sodium alginate (NaAlg)/acrylamide (AAm)) interpenetrating polymer networks (IPN) have been prepared at three different compositions, where the sodium alginate composition varies 1, 2, and 3% (w/v) in 50% (w/v) acrylamide solutions. These solutions have been irradiated with a 60Co‐γ source at different doses. The percent conversion was determined gravimetrically and 100% gelation was achieved at the 10.0 kGy dose. The swelling results at pH 7.0 and 9.0 indicated that (NaAlg/AAm)3IPN hydrogel, containing 3% NaAlg showed maximum % swelling in water, with swelling increasing in the order of Ni2+>Cd2+>Pb2+. Diffusion in aqueous solutions of metal ions within (NaAlg/AAm)IPN hydrogels was found to be Fickian character. Diffusion coefficients of (NaAlg/AAm)IPN hydrogels in water and aqueous solutions of metal ions were calculated. The maximum weight loss temperature and half life temperature for NaAlg, PAAm, (NaAlg/AAm)IPN and (NaAlg/AAm)IPN‐metal ion systems were found from thermal analysis studies. In the adsorption experiments, the efficiency of (NaAlg/AAm)IPN hydrogels to adsorb nickel, cadmium and lead ions from water was studied. (NaAlg/AAm)IPN hydrogels showed different adsorption for different aqueous solution of metal ion at pH 7.0. Adsorption isotherms were constructed for the (NaAlg/AAm)IPN‐metal ion systems. S type adsorption in the Giles classification system was found.  相似文献   
95.

This paper is an investigation on the thermo‐mechanical properties of a new class of materials, which holds promise for its potential use as solid polymer electrolytes, i.e., SPE material. A series of poly(ethylene oxide)‐polyurethane/poly(acrylonitrile) (PEO‐PU/PAN) semi‐IPNs, along with their LiClO4 salt complexes, were characterized for their thermal, mechanical and dimensional stability using DSC, TG‐DTA, UTM and DMTA. The glass transition temperature (Tg) of both the undoped and doped semi‐IPNs, obtained by DSC, remained well below room temperature (~?50°C to ?35°C), satisfying one of the essential requirements to serve as a SPE host matrix. The crystallization process in the PEO segments of the PEO‐PU/PAN semi‐IPNs was prevented at higher salt concentrations, which is attributed to the Li+ ion mediated pseudo‐crosslinks. Good thermal stability of the semi‐IPNs was evident from the degradation onset temperature (T0~240°C) with a three‐stage degradation process, which is independent of the PAN content as observed from differential thermogravimetric studies. The incorporation of PAN in the PEO‐PU networks results in improved mechanical properties, such as tensile strength and modulus while retaining the flexibility of the semi‐IPNs. The peak temperatures and storage modulus obtained from DMTA correlates well with the observations of DSC and tensile measurements.  相似文献   
96.
在溶剂热条件下合成了2个锌Ⅱ/镉Ⅱ配位聚合物:{[Zn(1,3-bip)(bpdc)]·0.5H2bpdc}n1),{[Cd2(1,3-bip)2(bpdc)2]·DMF}n2),H2bpdc=4,4''-联苯二甲酸,1,3-Bip=1,3-二(咪唑基)丙烷。并通过X射线单晶衍射,粉末XRD、红外光谱、元素分析以及热重分析对其结构进行表征。单晶解析结果表明:配位聚合物1是一个五重穿插3D→3D三维空间网络结构,配位聚合物2是一个二重穿插的2D→2D二维的(4,4)网格层状结构。另外,研究了2个配位聚合物在室温下的热稳定和荧光性能。  相似文献   
97.
From the results of an analysis of the viscoelastic characteristics of semi-interpenetrating polymer networks (semi-IPNs) that are based on a crosslinked polyurethane and a linear polystyrene and are formed in the presence of compatibilizing additives (oligourethane dimethacrylate and ethylene glycol monomethacrylate), their damping ability is est mated. Such parameters as the tangent of mechanical loss (tan δ) at the glass-transition temperature, the temperature interval of effective damping (where tan δ > 0.3), and the loss area under the loss modulus vs. temperature plots are used as the criteria of damping ability. It is shown that the introduction of the compatibilizing additives to the semi-IPNs extends the interval of their effective damping temperature. By varying the composition of the material and the amount of the compatibilizing additives, it is possible to realize a purposeful selection of vibration-damping materials for solving specific technological problems. __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 42, No. 4, pp. 545–558, July–August, 2006.  相似文献   
98.
一种新型生物可降解温敏互穿聚合物网络水凝胶   总被引:6,自引:0,他引:6  
采用互穿聚合物网络(IPN)技术合成了以魔芋葡甘聚糖(KGM)和聚(N-异丙基丙烯酰胺)(PNIPA)为组分的IPN凝胶,对所得凝胶结构进行了红外光谱分析.讨论了不同反应条件对产物凝胶溶胀性能和去溶胀性能的影响,观察到IPN凝胶的较低临界溶解温度约为31℃.当外界温度从20℃迅速转变为37℃时,凝胶在5min内快速收缩,大量失水,表现出良好的温度敏感性.体外降解实验结果显示IPN凝胶选择性地被伊糖苷酶以较高速率降解,且凝胶降解率随着KGM含量的增加而增加,即这种新型的IPN凝胶同时具备了KGM的生物可降解性和酶降解特异性,以及PNIPA的温度敏感性.  相似文献   
99.
The morphology–toughness relationship of vinyl ester/cycloaliphatic epoxy hybrid resins of interpenetrating network (IPN) structures was studied as a function of the epoxy hardening. The epoxy was crosslinked via polyaddition reactions (with aliphatic and cycloaliphatic diamines), cationic homopolymerization (via a boron trifluoride complex), and maleic anhydride. Maleic anhydride worked as a dual‐phase crosslinking agent by favoring the formation of a grafted IPN structure between the vinyl ester and epoxy. The type of epoxy hardener strongly affected the IPN morphology and toughness. The toughness was assessed by linear elastic fracture mechanics, which determined the fracture toughness and energy. The more compact the IPN structure was, the lower the fracture energy was of the interpenetrated vinyl ester/epoxy formulations. This resulted in the following toughness ranking: aliphatic diamine > cycloaliphatic diamine ≥ boron trifluoride complex > maleic anhydride. For IPN characterization, the width of the entangling bands and the surface roughness parameters were considered. Their values were deduced from atomic force microscopy scans taken on ion‐etched surfaces. More compact, less rough IPN‐structured resins possessed lower toughness parameters than less compact, rougher structured ones. The latter were less compatible according to dynamic mechanical thermal and thermogravimetric analyses. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5471–5481, 2004  相似文献   
100.
Semi-interpenetrating polymer networks have been obtained by UV-radiation curing of acrylate monomers dispersed in a polymer matrix, using an arylketone as photoinitiator. The polymerization kinetics was studied quantitatively by infrared spectroscopy for the various polymers examined: polyurethane, poly(vinyl chloride), poly(methyl methacrylate). The fastest reaction occurs in PVC films, where UV-curing develops extensively within a fraction of a second, leading to an insoluble and highly resistant material. The functionality of the acrylic monomer has a strong influence on the formulation reactivity, as well as on the mechanical and chemical properties of the final product. In PMMA, the polymerization was shown to continue to proceed efficiently for a few seconds after the UV exposure, even in the presence of air, due to both the high concentration of initiating radicals generated by the intense irradiation and the slow termination processes in solid media. © 1993 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号