首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   23篇
  国内免费   29篇
化学   265篇
晶体学   1篇
力学   2篇
综合类   1篇
数学   3篇
物理学   12篇
无线电   12篇
  2023年   3篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   8篇
  2018年   5篇
  2017年   10篇
  2016年   16篇
  2015年   11篇
  2014年   9篇
  2013年   21篇
  2012年   11篇
  2011年   5篇
  2010年   4篇
  2009年   13篇
  2008年   12篇
  2007年   14篇
  2006年   13篇
  2005年   14篇
  2004年   15篇
  2003年   12篇
  2002年   4篇
  2001年   8篇
  2000年   8篇
  1999年   7篇
  1998年   7篇
  1997年   7篇
  1996年   22篇
  1995年   7篇
  1994年   3篇
  1993年   9篇
  1992年   6篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
  1980年   1篇
排序方式: 共有296条查询结果,搜索用时 31 毫秒
51.
环氧树脂增韧改性的研究进展   总被引:1,自引:0,他引:1  
概述了近年来互穿聚合物网络(IPN)、刚性粒子增韧环氧树脂的研究现状,并展望了环氧树脂增韧改性研究的前景。  相似文献   
52.
Novel interpenetrating networks (IPNs) hydrogels responsive to temperature were prepared in situ by liquid-phase photopolymerization. The first network of the IPNs (poly isopropyl acrylamide) were formed with a special kind of hectorite (Laponite XLS) modified by tetrasodium pyrophosphate as cross-linker and 2-oxogultaric acid as photoinitiator. The samples were subsequently immersed in an acrylamide (AAm) aqueous solution for at least one day for preparing IPNs hydrogels, in which acrylamide aqueous solution containing N,N′-Dimetyl acrylamide (MBAA) as cross-linker and 2-oxogultaric acid as photoinitiator. Then the second networks were in situ formed by introducing ultraviolet light irradiated PNIPAAm gels. The swelling/deswelling behaviors of IPNs hydrogels were measured. Compared with the corresponding nanocomposite PNIPAAm hydroges(NC hydrogels), chemically cross-linked PNIPAAm and PAAm IPNs hydrogels, the results indicate that the new IPN hydrogel has a faster deswelling rate above its LCST (≈32 °C). The effect was explained as being an additional contribution of the PAAm chains in IPN hydrogels, which may act as a water-releasing channel when the hydrophobic aggregation of PNIPA takes place.  相似文献   
53.
An interpenetrating polymer network (IPN) material with controllable nanoporosity is developed for applications such as chemical protection. The IPN material is based on a conducting polymer backbone consisting of thiophene and 3,4 ethylenedioxythiophene (EDOT) repeat units–poly(thiophene‐EDOT)–formed within a soft polyurethane support. The IPN demonstrates reversible, electrochemically switchable nanoporosity in the absence of standard liquid electrolyte, with the oxidized state being the open (high porosity) state and the reduced state being the closed (low porosity) state. The switching of the IPN between its oxidized (open) and reduced (closed) states is actuated using application of ±1.0 V. The variability in the IPN porosity, induced by the electrochemical switching, is revealed by large changes in water vapor diffusivity, as well as changes in the diffusivities of the chemical agent simulants chloroethyl ethyl sulfide (CEES) and methyl salicylate (MeS). The closed state of the IPN is able to decrease CEES diffusivity by ≈99% compared to expanded Teflon (ePTFE), while the open state allows high MVT rates comparable to ePTFE. The IPN's ability to allow high MVT under non‐threat conditions (open state) and high protection from agents under threat conditions (closed state) is a unique and desirable characteristic of this novel IPN material.  相似文献   
54.
A simple way to form an interpenetrating hydrogel (IPH) by combining a layer‐by‐layer polyelectrolyte membrane with agarose is reported. The formed IPH membrane is more robust and easily manipulated compared to a polyelectrolyte membrane with the same number of layers. The IPH has good diffusion characteristics and retains the advantageous surface charge from the polyectrolyte composition that facilitates the adsorption of a stable lipid bilayer. The stable adsorption of a lipid bilayer on the IPH creates a biomimetic membrane system that is optimized for utilization in a diffusion chamber.  相似文献   
55.
A new poly(2‐(dimethylamino) ethyl methacrylate)/oxidized sodium alginate (PDMAEMA) semi‐interpenetrating network (Semi‐IPN) hydrogel with microporous structure was prepared by using PDMAEMA microgels as an additive during the polymerization/crosslinking process. The interior morphology characterized by scanning electron microscopy showed the Semi‐IPN hydrogels have different pore sizes by changing the amount of microgels. The hydrogels were also characterized by using Fourier transform infrared and DSC. The swelling behaviors of hydrogels indicated that the hydrogels have excellent pH and temperature sensitivity. Bovine serum albumin was entrapped in the hydrogels and the in vitro drug release profiles were established in different buffer solutions at various temperatures. The release behaviors of the model drug were dependent on the pore size of the hydrogels and environmental temperature/pH, which suggested that these materials have potential application as intelligent drug carriers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
56.
In the current work, hydrophilic silicone hydrogels were prepared for extended drug delivery applications. The preparation method was based on sequential interpenetrating network synthesis. A hydrophilic network was prepared by radical copolymerization of hydrophilic monomers 2‐hydroxyethyl methacrylate and poly(ethylene glycol) diacrylate. A hydrophobic silicone network was obtained by crosslinking polymerization of bifunctional methacrylated polydimethylsiloxanes macromonomer. The morphology of the silicone hydrogels was characterized by transmission electron microscopy. The result showed that the silicone hydrogels exhibited heterogeneous morphology. The properties of the silicone hydrogels such as equilibrium swelling ratio (ESR), mechanical property, oxygen permeability, contact angle, and protein repelling ability were investigated. Finally, the silicone hydrogels were loaded with timolol by pre‐soaking in drug solution to evaluate drug‐loading capacity and in vitro release behavior. The results showed that mechanical strength and oxygen permeability increased, and the ESR decreased with the increase of silicone component in the silicone hydrogels. The result of the contact angle measurement indicated that the silicone hydrogels possessed hydrophilic surfaces. The drug loading and in vitro releases were dependent on the composition of hydrophilic/hydrophobic phase of silicone hydrogels. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
57.
用红外光谱跟踪确定了同步互穿聚合物网络的形成工艺 ,并制成其梯次化复合涂层 ,TEM检测表明两相间的相畴尺寸在纳米级范围内 ;在此基础上 ,以钛酸钡超细纤维对此网络体系进行复合 ,确定偶联剂的加入量及复合工艺 ,测量了不同复合量下材料的电阻率 ,并考察了其伏安特性。此工作可为拓展此类材料的应用领域提供有价值的参考数据。  相似文献   
58.
以苯乙烯、甲基丙烯酸甲酯、丙烯腈等单体或它们的混合物为硬单体,天然胶乳为弹性组分,经多步种子乳液聚合法制得了在天然胶乳的粒子上镶嵌硬聚合物相的互穿网络型乳胶粒子.考察了十二烷基硫酸钠、十二烷基苯磺酸钠、壬基酚聚氧乙烯醚、油酸等乳化体系,过硫酸钾、过氧化苯甲酰热引发体系及异丙苯过氧化氢-四乙烯五胺、叔丁基过氧化氢-四乙烯五胺等氧化还原引发体系对聚合反应的影响.研究了交联剂用量对互穿结合率、溶胶含量的影响及溶胀时间、硬单体组成、乳化剂种类对乳胶粒子形态的影响,确定了适宜的聚合配方和工艺条件.透射电镜观察乳粒形态结果表明,单一使用极性或非极性单体,仅得到核-壳结构乳液,而采用不同极性单体复合、溶胀、互穿,得到的是镶嵌硬聚合物型乳粒结构.  相似文献   
59.
A series of latex particles with interpenetrating polymer network structure have been synthesized from waterborne polyurethane (PU) and polystyrene (PS). The effect of PU/PS composition, cross-linking density in the PS domain as well as in PU have been studied in terms of dispersion size, transmission electron microscopy morphology, mechanical and dynamic mechanical properties in addition to swellability in water and toluene of the dispersion cast film. It was found that inverted core (PS)–shell (PU) morphology was well defined and that the domain size as well as the film properties were well controlled by the latex composition and cross-linking density of both phases. Received: 15 March 2000 Accepted: 21 February 2001  相似文献   
60.
In this study NMR and DSC are used to probe the structure, thermal characteristics and morphology of a network formed from a diepoxide/acrylate system. Separate chemistries are employed to polymerize the diepoxide and acrylate components. The cationic polymerization of the diepoxide exhibits excellent selectivity in producing a crosslinked polyether network without affecting the acrylate monomer. Subsequent photoinitiated free-radical polymerization of the acrylate produces a phase separated, semi-interpenetrating polymer network (SIPN).This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号