首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7778篇
  免费   829篇
  国内免费   378篇
化学   4330篇
晶体学   158篇
力学   76篇
综合类   11篇
数学   11篇
物理学   3209篇
无线电   1190篇
  2024年   2篇
  2023年   65篇
  2022年   134篇
  2021年   201篇
  2020年   227篇
  2019年   185篇
  2018年   169篇
  2017年   214篇
  2016年   342篇
  2015年   365篇
  2014年   359篇
  2013年   557篇
  2012年   335篇
  2011年   475篇
  2010年   415篇
  2009年   565篇
  2008年   477篇
  2007年   670篇
  2006年   588篇
  2005年   396篇
  2004年   414篇
  2003年   316篇
  2002年   242篇
  2001年   213篇
  2000年   157篇
  1999年   172篇
  1998年   141篇
  1997年   140篇
  1996年   103篇
  1995年   82篇
  1994年   71篇
  1993年   54篇
  1992年   24篇
  1991年   19篇
  1990年   16篇
  1989年   11篇
  1988年   17篇
  1987年   13篇
  1986年   11篇
  1985年   7篇
  1984年   5篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1975年   2篇
  1973年   1篇
  1971年   3篇
排序方式: 共有8985条查询结果,搜索用时 218 毫秒
931.
The dispersion of highly hydrophobic carbon materials such as carbon nanotubes in biological media is a challenging issue. Indeed, the nonspecific adsorption of proteins occurs readily when the nanotubes are introduced in biological media; therefore, a methodology to control adsorption is in high demand. To address this issue, we developed a bifunctional linker derived from pyrene that selectively enables or prevents the adsorption of proteins on single-wall carbon nanotubes (SWNTs). We demonstrated that it is possible to decrease or completely suppress the adsorption of proteins on the nanotube sidewall by using proper functionalization (either covalent or noncovalent). By subsequently activating the functional groups on the nanotube derivatives, protein adsorption can be recovered and, therefore, controlled. Our approach is simple, straightforward, and potentially suitable for other biomolecules that contain thio or amino groups available for coupling.  相似文献   
932.
A combination of atomic force microscopy (AFM), high‐resolution scanning electron microscopy (HR‐SEM), focused‐ion‐beam scanning electron microscopy (FIB‐SEM), X‐ray photoelectron spectroscopy (XPS), confocal fluorescence microscopy (CFM), and UV/Vis and synchrotron‐based IR microspectroscopy was used to investigate the dealumination processes of zeolite ZSM‐5 at the individual crystal level. It was shown that steaming has a significant impact on the porosity, acidity, and reactivity of the zeolite materials. The catalytic performance, tested by the styrene oligomerization and methanol‐to‐olefin reactions, led to the conclusion that mild steaming conditions resulted in greatly enhanced acidity and reactivity of dealuminated zeolite ZSM‐5. Interestingly, only residual surface mesoporosity was generated in the mildly steamed ZSM‐5 zeolite, leading to rapid crystal coloration and coking upon catalytic testing and indicating an enhanced deactivation of the zeolites. In contrast, harsh steaming conditions generated 5–50 nm mesopores, extensively improving the accessibility of the zeolites. However, severe dealumination decreased the strength of the Brønsted acid sites, causing a depletion of the overall acidity, which resulted in a major drop in catalytic activity.  相似文献   
933.
Scratching the surface: Formation of a monolayer of 2H-tetraphenylporphyrins (2H-TPP) on Ag(111), either by sublimation of a multilayer in the range 525-600?K or by annealing (at the same temperature) a monolayer deposited at room temperature, induces a chemical modification of the molecules. Rotation of the phenyl rings into a flat conformation is observed and tentatively explained, by using DFT calculations, as a peculiar reaction due to molecular dehydrogenation.  相似文献   
934.
Within this work we present a ‘proof of principle’ study for the use of scanning electrochemical microscopy (SECM) to detect and image biomolecular interactions in a label-free assay as a potential alternative to current fluorescence techniques. Screen-printed carbon electrodes were used as the substrate for the deposition of a dotted array, where the dots consist of biotinylated polyethyleneimine. These were then further derivatised, first with neutravidin and then with a biotinylated antibody to the protein neuron specific enolase (NSE). SECM using a ferrocene carboxylic acid mediator showed clear differences between the array and the surrounding unmodified carbon. Imaging of the arrays before and following exposure to various concentrations of the antigen showed clear evidence for specific binding of the NSE antigen to the antibody derivatised dots. Non-specific binding was quantified. Control experiments with other proteins showed only non-specific binding across the whole of the substrate, thereby confirming that specific binding does occur between the antibody and antigen at the surface of the dots. Binding of the antigen was accompanied by a measured increase in current response, which may be explained in terms of protein electrostatic interaction and hydrophobic interactions to the mediator, thereby increasing the localised mediator flux. A calibration curve was obtained between 500 fg mL−1 to 200 pg mL−1 NSE which demonstrated a logarithmic relationship between the current change upon binding and antigen concentration without the need for any labelling of the substrate.  相似文献   
935.
疏水缔合聚丙烯酰胺与双子表面活性剂的相互作用   总被引:4,自引:0,他引:4  
制备了一种脂肪酸酯双磺酸盐型双子表面活性剂, 利用粘度法、界面张力法和原子力显微镜研究了疏水缔合聚丙烯酰胺与双子表面活性剂在溶液中的相互作用. 实验结果表明: 疏水缔合聚丙烯酰胺在溶液中能够通过自组装形成疏水微区并发展成网络结构, 疏水微区与表面活性剂在溶液中能形成混合胶束; 当一定量的表面活性剂加入时, 对疏水缔合聚丙烯酰胺的自组装起促进作用, 而过多双子表面活性剂的加入又会对聚合物分子的自组装起抑制作用, 从而显著影响疏水缔合聚丙烯酰胺的溶液性质, 随着表面活性剂浓度的增加, 聚合物溶液粘度先增加、再降低; 同时, 疏水缔合聚丙烯酰胺对双子表面活性剂的界面性能也有较大影响, 聚合物的加入使双子表面活性剂降低油/水界面张力的能力下降, 油/水界面张力达到平衡所需时间延长.  相似文献   
936.
Pure, perfectly spherical cellulose nanoparticles with sizes of ≈80-260 nm can be prepared by dialysis starting from trimethylsilylcellulose (TMSC). The aqueous suspensions obtained are storable for several months. Subsequent covalent labeling of the cellulose nanoparticles with FITC has no influence on particle size, shape, and stability. The particles can be sterilized and suspended in biological media without structural changes. Incorporation of FITC-labeled cellulose nanoparticles into living human fibroblasts is studied using confocal LSM. In contrast to cellulose nanocrystals, fast cellular uptake is found for the nanospheres without transfection reagents or attachment of a receptor molecule. This suggests an influence of the geometry of biocompatible nanomaterials on endocytosis.  相似文献   
937.
Organic–inorganic hybrids are artificially created structures presenting novel properties not exhibited by either of the component materials alone. In this contribution one addresses processing, morphology and properties of polymer nanocomposites reinforced graphene. First, synthesis routes to graphite oxide (GO) and foliated graphene sheets (FGS) are illustrated. Physical characterization of these graphene sheets were conducted using atomic force microscopy and X-ray diffraction techniques. Processing, structure and properties of graphene/poly(ethylene oxide) (PEO) nanocomposites are discussed. FGS was dispersed into PEO via two different composite manufacturing techniques: melt compounding and solvent mixing. Morphology of dispersed graphene and properties from different blending routes are compared. TEM showed that graphene distributed parallel to the composite surface using solvent method, while distributed randomly in melt blended method. Optical measurements indicated that the transparency of PEO/graphene prepared by solvent method is higher than that of melt blended method in the visible region. Electrical conductivity measurements are employed to evaluate threshold concentration for rigidity and connectivity percolation. The percolation concentration of the composites prepared by solvent method is less than those of melt blended method. The mechanical performance of the composites prepared by solvent method is higher than melt blended. Halpin–Tsai model has been used to confirm the distribution of the graphene into PEO by the two different processing techniques.  相似文献   
938.
939.
Cubic and octahedral Cu2O nanocrystals and Au–Cu2O core–shell heterostructures are used as sacrificial templates for the growth of Cu2S nanocages and Au–Cu2S core–cage structures. A rapid sulfidation process involving a surface reaction of Cu2O nanocrystals with Na2S, followed by etching of the Cu2O cores with HCl solution for ≈5 sec, results in the fabrication of Cu2S cages with a wall thickness of 10–20 nm. Transmission electron microscopy characterization reveals the formation of crystalline walls and the presence of ultrasmall pores with sizes of 1 nm or less. Formation of Cu2O–Cu2S core–shell structures and their conversion into Cu2S cages is verified by UV–vis absorption spectroscopy. X‐ray photoelectron spectra further confirm the composition of the cages as Cu2S. The entire hollowing process via the Kirkendall effect is recorded using in‐situ transmission X‐ray microscopy. After shell formation, continuous ionic diffusion removes the interior Cu2O. Intermediate structures with remaining central Cu2O portions and bridging arms to the surrounding cages are observed. The nanocages are also shown to allow molecular transport: anthracene and pyrene penetration into the cages leads to enhanced fluorescence quenching immediately upon adsorption onto the surfaces of the encapsulated gold nanocrystals.  相似文献   
940.
A facile route is presented for the fabrication of spherical PbTiO3 (PTO) nanodot arrays on platinized silicon substrates using PbO vapor phase reaction sputtering on micellar monolayer films of polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) loaded with TiO2 sol–gel precursor. Short exposure to PbO transforms the amorphous TiO2 into polycrystalline PTO, while keeping the inherent size and periodicity of TiO2 nanodots. HRTEM images show that the spherical PTO nanodots, with an average size and height of 63 nm and 40 nm, respectively, are fixed on the Pt supported by residual carbon. XPS narrow scan spectra of Ti 2p and O 1s strongly verify the evolution of chemical identity and the reduction of the Ti‐O binding energy from TiO2 to PTO. The amplitude and phase images of piezoelectric force microscopy (PFM) confirm a multidomain structure attributed by the crystalline orientation of the PTO nanodots. Furthermore, the discrete PTO nanodots show remarkable switching properties due to the low strain field induced by the small lateral size, and the absence of domain pinning effects by grain boundary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号