首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139727篇
  免费   12777篇
  国内免费   14827篇
化学   84369篇
晶体学   1972篇
力学   3206篇
综合类   1017篇
数学   13340篇
物理学   28652篇
无线电   34775篇
  2024年   271篇
  2023年   1306篇
  2022年   2425篇
  2021年   2801篇
  2020年   3422篇
  2019年   3309篇
  2018年   3120篇
  2017年   4464篇
  2016年   4705篇
  2015年   4674篇
  2014年   5796篇
  2013年   10357篇
  2012年   9423篇
  2011年   8609篇
  2010年   6954篇
  2009年   8621篇
  2008年   9086篇
  2007年   9637篇
  2006年   8914篇
  2005年   7705篇
  2004年   7017篇
  2003年   5811篇
  2002年   6716篇
  2001年   4244篇
  2000年   3894篇
  1999年   3471篇
  1998年   3089篇
  1997年   2500篇
  1996年   2136篇
  1995年   2066篇
  1994年   1745篇
  1993年   1451篇
  1992年   1348篇
  1991年   935篇
  1990年   777篇
  1989年   673篇
  1988年   523篇
  1987年   416篇
  1986年   392篇
  1985年   326篇
  1984年   333篇
  1983年   187篇
  1982年   274篇
  1981年   218篇
  1980年   231篇
  1979年   223篇
  1978年   189篇
  1977年   138篇
  1976年   119篇
  1973年   83篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
21.
In many organic electronic devices functionality is achieved by blending two or more materials, typically polymers or molecules, with distinctly different optical or electrical properties in a single film. The local scale morphology of such blends is vital for the device performance. Here, a simple approach to study the full 3D morphology of phase‐separated blends, taking advantage of the possibility to selectively dissolve the different components is introduced. This method is applied in combination with AFM to investigate a blend of a semiconducting and ferroelectric polymer typically used as active layer in organic ferroelectric resistive switches. It is found that the blend consists of a ferroelectric matrix with three types of embedded semiconductor domains and a thin wetting layer at the bottom electrode. Statistical analysis of the obtained images excludes the presence of a fourth type of domains. The criteria for the applicability of the presented technique are discussed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1231–1237  相似文献   
22.
Electrospun nonwovens of poly(L-lactide) (PLLA) modified with multiwall carbon nanotubes (MWCNT) and linear ladder-like poly(silsesquioxane) with methoxycarbonyl side groups (LPSQ-COOMe) were obtained. MWCNT and LPSQ-COOMe were added to the polymer solution before the electrospinning. In addition, nonwovens of PLLA grafted to modified MWCNT were electrospun. All modified nonwovens exhibited higher tensile strength than the neat PLA nonwoven. The addition of 10 wt.% of LPSQ-COOMe and 0.1 wt.% of MWCNT to PLLA increased the tensile strength of the nonwovens 2.4 times, improving also the elongation at the maximum stress.  相似文献   
23.
一种北斗联合低轨星座的导航增强方法研究   总被引:1,自引:0,他引:1  
单纯依靠北斗导航系统提供定位导航授时服务,存在卫星信号落地功率低、易受遮蔽和阻断的不足。针对此问题,研究了一种北斗联合低轨星座实现导航增强的系统架构;提出了一种新的适应严重遮蔽或干扰条件下,基于到达时间(TOA)和到达频率(FOA)联合观测的定位解算算法;对高中低轨混合星座条件下的覆盖特性和精度衰减因子进行了仿真分析。分析结果表明,用户可见星数平均增加了64.2%,位置精度衰减因子(PDOP)平均改善了28.7%。研究结果可为下一代北斗的论证设计与研制建设提供参考借鉴。  相似文献   
24.
Star copolymers have attracted significant interest due to their different characteristics compared with diblock copolymers, including higher critical micelle concentration, lower viscosity, unique spatial shape, or morphologies. Development of synthetic skills such as anionic polymerization and controlled radical polymerization have made it possible to make diverse architectures of polymers. Depending on the molecular architecture of the copolymer, numerous morphologies are possible, for instance, Archimedean tiling patterns and cylindrical microdomains at symmetric volume fraction for miktoarm star copolymers as well as asymmetric lamellar microdomains for star‐shaped copolymers, which have not been reported for linear block copolymers. In this review, we focus on morphologies and microphase separations of miktoarm (AmBn and ABC miktoarm) star copolymers and star‐shaped [(A‐b‐B)n] copolymers with nonlinear architecture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1–21  相似文献   
25.
High‐performance adhesives require mechanical properties tuned to demands of the surroundings. A mismatch in stiffness between substrate and adhesive leads to stress concentrations and fracture when the bonding is subjected to mechanical load. Balancing material strength versus ductility, as well as considering the relationship between adhesive modulus and substrate modulus, creates stronger joints. However, a detailed understanding of how these properties interplay is lacking. Here, a biomimetic terpolymer is altered systematically to identify regions of optimal bonding. Mechanical properties of these terpolymers are tailored by controlling the amount of a methyl methacrylate stiff monomer versus a similar monomer containing flexible poly(ethylene glycol) chains. Dopamine methacrylamide, the cross‐linking monomer, is a catechol moiety analogous to 3,4‐dihydroxyphenylalanine, a key component in the adhesive proteins of marine mussels. Bulk adhesion of this family of terpolymers is tested on metal and plastic substrates. Incorporating higher amounts of poly(ethylene glycol) into the terpolymer introduces flexibility and ductility. By taking a systematic approach to polymer design, the region in which material strength and ductility are balanced in relation to the substrate modulus is found, thereby yielding the most robust joints.  相似文献   
26.
27.
The principles and design of “active” self‐propelling particles that can convert energy, move directionally on their own, and perform a certain function is an emerging multidisciplinary research field, with high potential for future technologies. A simple and effective technique is presented for on‐demand steering of self‐propelling microdiodes that move electroosmotically on water surface, while supplied with energy by an external alternating (AC) field. It is demonstrated how one can control remotely the direction of diode locomotion by electronically modifying the applied AC signal. The swimming diodes change their direction of motion when a wave asymmetry (equivalent to a DC offset) is introduced into the signal. The data analysis shows that the ability to control and reverse the direction of motion is a result of the electrostatic torque between the asymmetrically polarized diodes and the ionic charges redistributed in the vessel. This novel principle of electrical signal‐coded steering of active functional devices, such as diodes and microcircuits, can find applications in motile sensors, MEMs, and microrobotics.  相似文献   
28.
Three N-heteroleptic Pt(II) complexes, [Pt(C^C)(O^O)] [O^O = acetylacetonate, C^C = 1-phenyl-1,2,4-triazol-5-ylidene (1), C^C = 4-phenyl-1,2,4-triazol-5-ylidene (2), C^C = 2-phenylpyrazine (3)] have been investigated with density functional theory (DFT) and time-dependent density functional theory (TDDFT). The radiative decay rate constants of complexes 1–3 have been discussed with the oscillator strength (fn), the strength of spin–orbit coupling (SOC) interaction between the lowest energy triplet excited state (T1) and singlet excited states (Sn), and the energy gaps between E(T1) and E(Sn). To illustrate the nonradiative decay processes, the transition states between triplet metal-centered (3MC) and T1 states have been optimized and were verified with the calculations of vibrational frequencies and intrinsic reaction coordinate (IRC). In addition, the minimum energy crossing points (MECPs) between 3MC and ground states (S0) were optimized. At last, the potential energy curves relevant to the nonradiative decay pathways are simulated. The results show that complex 3 has the biggest photoluminescence quantum yield because the complex 3 has the biggest radiative decay rate constant and the smallest nonradiative decay rate constant in complexes 1–3.  相似文献   
29.
In the last decade, catalytic chemical vapor deposition (CVD) has been intensively explored for the growth of single-layer graphene (SLG). Despite the scattering of guidelines and procedures, variables such as the surface texture/chemistry of catalyst metal foils, carbon feedstock, and growth process parameters have been well-scrutinized. Still, questions remain on how best to standardize the growth procedure. The possible correlation of procedures between different CVD setups is an example. Here, two thermal CVD reactors were explored to grow graphene on Cu foil. The design of these setups was entirely distinct, one being a “showerhead” cold-wall type, whereas the other represented the popular “tubular” hot-wall type. Upon standardizing the Cu foil surface, it was possible to develop a procedure for cm2-scale SLG growth that differed only by the carrier gas flow rate used in the two reactors.  相似文献   
30.
Processing of Carapa guianensis seeds to obtain oil on an industrial scale generates a significant amount of by-product, approximately 66% w/w, which is called cake and is a potential source of biomolecules, including simple phenolic structures. For this reason, studies were carried out on the chemical profiles of hydrolyzed extract from this agro-industrial by-product through High Performance Thin-Layer Chromatography (HPTLC) and Gas Chromatography coupled to Mass Spectrometry (GC–MS). These techniques were used to detect metabolic classes and/or groups, and to identify, for the first time, thirteen simple phenolic acids in this by-product. The sample antioxidant capacity was determined by methods of 2,2-diphenyl-1-picrylhydrazyl (DPPH)and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+) radicals direct sequestration. The hydrolyzed fraction showed a total of 63.47% in the relative abundance of the total of compounds, standing out: p-hydroxybenzoic acid (39.19%) and protocatechuic acid (3,4-dihydroxybenzoic acid) (5.62%), both from hydroxybenzoic acids and 3-(3,4-dihydroxyphenyl)lactic acid, (7.76%) hydroxycinnamic acids derivatives. In these results, the fraction rich in simple phenolic acids was obtained, attributing the prominent behavior of this matrix antioxidant activity, expressed by (IC50: of 16.42 µg/mL and 6.52 µg/mL for DPPH and ABTS+ radicals, respectively). The research demonstrated an alternative to applicability that involves sustainability from agro-industrial. These techniques were used to detect metabolic classes and/or groups, and to identify, for the first time, thirteen simple phenolic acids in this by-product, generating a process capable of converting biomass into a bioproduct, consisting of bioactive compounds, in addition to adding value to the industrial chain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号