首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5618篇
  免费   1055篇
  国内免费   490篇
化学   2724篇
晶体学   37篇
力学   402篇
综合类   41篇
数学   487篇
物理学   984篇
无线电   2488篇
  2024年   33篇
  2023年   167篇
  2022年   231篇
  2021年   300篇
  2020年   312篇
  2019年   299篇
  2018年   236篇
  2017年   292篇
  2016年   332篇
  2015年   314篇
  2014年   409篇
  2013年   442篇
  2012年   412篇
  2011年   406篇
  2010年   316篇
  2009年   278篇
  2008年   290篇
  2007年   282篇
  2006年   262篇
  2005年   239篇
  2004年   218篇
  2003年   242篇
  2002年   160篇
  2001年   127篇
  2000年   106篇
  1999年   63篇
  1998年   56篇
  1997年   69篇
  1996年   46篇
  1995年   55篇
  1994年   40篇
  1993年   20篇
  1992年   16篇
  1991年   20篇
  1990年   14篇
  1989年   10篇
  1988年   11篇
  1987年   6篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1963年   1篇
  1959年   1篇
  1936年   1篇
排序方式: 共有7163条查询结果,搜索用时 9 毫秒
91.
In this work, a new nanocatalyst, Fe2W18Fe4@NiO@CTS, was synthesized by the reaction of sandwich‐type polyoxometalate (Fe2W18Fe4), nickel oxide (NiO), and chitosan (CTS) via sol–gel method. The assembled nanocatalyst was systematically characterized by FT‐IR, UV–vis, XRD, SEM, and EDX analysis. The catalytic activity of Fe2W18Fe4@NiO@CTS was tested on oxidative desulfurization (ODS) of real gasoline and model fuels. The experimental results revealed that the levels of sulfur content and mercaptan compounds of gasoline were lowered with 97% efficiency. Also, the Fe2W18Fe4@NiO@CTS nanocatalyst demonstrated an outstanding catalytic performance for the oxidation of dibenzothiophene (DBT) in the model fuel. The major factors that influence the desulfurization efficiency and the kinetic study of the ODS reactions were fully detailed and discussed. The probable ODS pathway was proposed via the electrophilic mechanism on the basis of the electrophilic characteristic of the metal‐oxo‐peroxo intermediates. The prepared nanocatalyst could be reused for 5 successive runs without any appreciable loss in its catalytic activity. As a result, the current study suggested the potential application of the Fe2W18Fe4@NiO@CTS hybrid nanocatalyst as an ideal candidate for removal of sulfur compounds from fuel.  相似文献   
92.
The new inorganic–organic hybrids based on SO3H‐functionalized ionic liquids (ILs) and Keggin‐type heteropoly acids (H3PW12O40, H3PMo12O40, and H4SiW12O40; HPAs) are prepared and characterized by FT‐IR, NMR, XRD, CV, SEM/EDX, ICP‐OES, BJH and UV. Different molecular structures according to the different inorganic part were also proved. Potentiometric titration showed a good relationship between catalytic activity and acidity of the catalysts. Electrochemical aspects showed electron transfer ability of the compounds. For understanding catalytic activities of the HPA‐IL hybrids in N‐formylation reaction, effect of catalyst composition, substrate, and reaction conditions were studied. The best SO3H‐functionalized ionic liquid catalyst was readily recovered and reused for four runs. Easy preparation of the catalyst, simple and easy work‐up, mild reaction conditions, low cost, excellent yields and short reaction times are the key features of this work.  相似文献   
93.
树状大分子/金属(化合物)纳米复合材料*   总被引:2,自引:0,他引:2  
本文综述了一类新的有机/无机杂化材料——树状大分子/金属(化合物)纳米复合材料的研究进展。该杂化纳米材料由树状大分子内或树状大分子间螯合金属离子通过还原生成相应的零价金属纳米粒子或与阴离子反应生成金属化合物的方法制备。其中树状大分子内复合物粒子体积与原树状大分子内负载的金属离子数量有关,树状大分子间复合物粒子体积与树状大分子的浓度和代数有关。  相似文献   
94.
光固化环氧丙烯酸酯/SiO2杂化材料的研究   总被引:6,自引:0,他引:6  
用FTIR、SEM、DSC和TGA表征了光固化环氧丙烯酸酯/SiO2杂化材料[(EA-TMSPM)/SiO2],研究了盐酸、γ-甲基丙烯酰氧丙基三甲氧基硅烷(TMSPM)和无机物浓度对(EA-TMSPM)/SiO2结构与性能的影响。结果表明,无机物浓度高的(EA-TMSPM)/SiO2杂化体系中SiO2粒子尺寸略大于无机物浓度低的体系;盐酸和无机物浓度的增加,都可以增强杂化材料的耐磨性。  相似文献   
95.
Imide-siloxane block copolymer/silica hybrid membranes with covalent bonds were prepared via sol–gel reaction. The structural informations of these hybrid membranes were obtained by using Fourier transform-infrared spectrometry (FT-IR), 29Si nuclear magnetic resonance (29Si NMR), XPS and thermogravimetric analysis (TGA). The gas separation properties of the hybrid membranes were also investigated in terms of organosiloxane (PDMS) or silica content at various temperatures. In the hybrids, the addition of PDMS phase increased the permeabilities of gases such as He, CO2, O2, and N2, indicating that the gas transport occurred mainly through rubbery organic matrix. Meanwhile, the PDMS phase contributed the decreased gas selectivities to nitrogen but the reduction in selectivities was very small in comparison with other siloxane containing polymeric membranes. This might be due to the restriction of chain mobility by the existence of inorganic component such as silica network in the hybrids. Additionally, the increase of silica content in these hybrid membranes considerably retarded the falling-off of gas selectivity at elevated temperature. The increase of silica content in hybrid membranes resulted in well-formed silica networks and hence these inorganic components restricted the plasticization of organic matrix by the thermal segmental motion of organic components, leading to preventing the large decrease of the gas selectivity.  相似文献   
96.
Nano sized crystalline particles/polymer hybrids were synthesized form designed metal-organic precursors. The newly developed method is composed of the synthesis of organic matrix by polymerization and the in situ nucleation and growth of crystalline oxide particles in the organic matrix below 100°C. The design of metal-organic precursor modified with polymerizable ligand and the selection of reaction conditions does influence the size and crystallinity of ceramic particles in organic matrix. The nano-sized magnetic particle/polymer hybrid exhibits the interesting feature of superparamagnetism and quantum size effect. The crystalline particles of BaTiO3/, PbTiO3/, and KNbO3/polymer hybrids behave to be dielectric and show the typical electro-rheological behavior.  相似文献   
97.
Organically substituted metal alkoxides can be prepared by reaction of the parent alkoxides with complexing organic compounds. The chemical and structural consequences of such substitutions are discussed in this article. Examples are given showing how functional organic moieties, such as polymerizable groups, can be incorporated into sol-gel materials via the complexing ligands. Major structural differences between silica-based and metal-based hybrid materials originate from the different charge/coordination number ratios of silicon and most metals. This results in a high tendency for the molecular building blocks to aggregate. In many cases, metal oxide clusters are formed which are capped by the organic ligands. Such surface-modified clusters are themselves very valuable condensed matter units for materials syntheses.  相似文献   
98.
The manufacturing of ophthalmic lenses is one of the most important markets worldwide and, therefore, strong research efforts are undertaken to continuously improve the quality of the products, either silicate glasses or organic polymer lenses. Hybrid sol-gel based materials play a major role in this highly competitive field and have contributed significantly to the commercial success of the organic base materials. Recent developments concern fast curing and patternable coatings that might soon become part of this business. The compatibility of hybrid sol-gel materials either with organic dyes or with inorganic vacuum borne coatings offers further possibilities to develop highly sophisticated lenses meeting not only customer needs like perfect corrective function, high optical quality and protection, but also high durability as well as cosmetic and decorative aspects. An overview and a few recent developments are outlined below.  相似文献   
99.
The past decade has witnessed tremendous advances in the synthesis of polymers that contain elements from the main groups beyond those found in typical organic polymers. Unique properties that arise from dramatic differences in bonding and molecular geometry, electronic structure, and chemical reactivity, are exploited in diverse application fields. Herein we highlight recent advances in inorganic backbone polymers, discuss how Lewis acid/base functionalization of polymers results in unprecedented reactivity, and survey conjugated hybrids with unique electronic structures for sensor and device applications.  相似文献   
100.
The crystallographic defects inevitably incur during the solution processed organic‐inorganic hybrid perovskite film, especially at surface and the grain boundaries (GBs) of perovskite film, which can further result in the reduced cell performance and stability of perovskite solar cells (PSCs). Here, a simple defect passivation method was employed by treating perovskite precursor film with a hydrophobic tetra‐ammonium zinc phthalocyanine (ZnPc). The results demonstrated that a 2D‐3D graded perovskite interface with a capping layer of 2D (ZnPc)0.5MAn ? 1PbnI3n + 1 perovskite together with 3D MAPbI3 perovskite was successfully constructed on the top of 3D perovskite layer. This situation realized the efficient GBs passivation, thus reducing the defects in GBs. As expected, the corresponding PSCs with modified perovskite revealed an improved cell performance. The best efficiency reached 19.6%. Especially, the significantly enhanced long‐term stability of the responding PSCs against humidity and heating was remarkably achieved. Such a strategy in this work affords an efficient method to improve the stability of PSCs and thus probably brings the PSCs closer to practical commercialization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号