首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30382篇
  免费   5844篇
  国内免费   3208篇
化学   14493篇
晶体学   509篇
力学   2180篇
综合类   196篇
数学   1056篇
物理学   10110篇
无线电   10890篇
  2024年   130篇
  2023年   404篇
  2022年   766篇
  2021年   963篇
  2020年   1205篇
  2019年   1089篇
  2018年   1040篇
  2017年   1271篇
  2016年   1438篇
  2015年   1437篇
  2014年   1773篇
  2013年   2729篇
  2012年   2106篇
  2011年   1979篇
  2010年   1570篇
  2009年   1664篇
  2008年   1739篇
  2007年   1882篇
  2006年   1758篇
  2005年   1563篇
  2004年   1432篇
  2003年   1224篇
  2002年   1161篇
  2001年   1032篇
  2000年   968篇
  1999年   834篇
  1998年   641篇
  1997年   618篇
  1996年   551篇
  1995年   484篇
  1994年   422篇
  1993年   342篇
  1992年   292篇
  1991年   162篇
  1990年   144篇
  1989年   125篇
  1988年   112篇
  1987年   67篇
  1986年   52篇
  1985年   44篇
  1984年   42篇
  1983年   24篇
  1982年   32篇
  1981年   30篇
  1980年   13篇
  1979年   18篇
  1978年   11篇
  1977年   11篇
  1976年   12篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
We generate an amorphous MgCu model using the rapid solidification of the melt through a first-principles molecular dynamics approach within a generalised gradient approximation and reveal, for the first time, its structural features and mechanical properties in details. The liquid and glassy MgCu are found to acquire slightly distinct local structures. Yet in both forms of MgCu, most Cu atoms have a tendency to form the ideal and defective icosahedrons while Mg atoms are arranged in complex configurations. The mean coordination number of Cu and Mg at 300 K is 11.31 and 13.73, respectively. The short-range order of MgCu glass is projected to be different than the known crystalline MgCu and Mg2Cu phases. The mechanical properties of MgCu glass and the CsCl-type MgCu crystal are computed and compared. On the basis of the enthalpy analyses, a possible pressure-induced crystallisation of the MgCu glass into a CsCl-type structure is proposed to occur at around 11 GPa.  相似文献   
972.
Hollow materials with different configurations are of interest due to their unique structural features, which induce interesting properties e.g. catalysis. Here, the synthesis of asymmetrical hollow ball‐in‐tube (HBT) structured CeO2 is reported, which is achieved using a dual template engaged solid–liquid interfacial reaction. In this reaction, the SiO2 sphere (hard template)‐embedded Ce(OH)CO3 nanorod (sacrificial template) composite is first treated with NaOH solution, followed by an acid wash to obtain asymmetrical hollow structured CeO2. Such HBT structured CeO2 is demonstrated to be a good support for Au nanoparticles toward CO oxidation as compared to simple hollow CeO2 nanotubes, leading to significantly increase catalytic activity.  相似文献   
973.
The monomer 3‐allyl‐5‐(phenylazo)‐2‐thioxothiazolidine‐4‐one (HL) was prepared by the reaction of allyl rhodanine with aniline through diazo‐coupling reaction. Reaction of HL with Ni(II) or Co(II) salts gave polymer complexes ( 1 – 8 ) with general stoichiometries [M(HL)(Cl)2(OH2)2]n, [M(HL)(O2SO2)(OH2)2]n, [M(L)(O2NO)(H2O)2]n and [M(L)(O2CCH3)(H2O)2]n (where M = Ni(II) or Co(II)). The structures of the polymer complexes were identified using elemental analysis, infrared and electronic spectra, molar conductance, magnetic susceptibility, X‐ray diffraction and thermogravimetric analysis. The interaction between the polymer complexes and calf thymus DNA showed a hypochromism effect. HL and its polymer complexes were tested against bacterial and fungal species. Co(II) polymer complex 2 is the most effective against Klebsiella pneumoniae and is more active than penicillin. The results showed that Ni(II) polymer complex 5 is a good antibacterial agent against Staphylococcus aureus and Pseudomonas aeruginosa. Molecular docking was used to predict the binding between the monomer with the receptors of prostate cancer (PDB code: 2Q7L Hormone) and breast cancer (PDB code: 1JNX Gene regulation). Coats–Redfern and Horowitz–Metzger methods were applied for calculating the thermodynamic parameters of HL and its polymer complexes. The thermal activation energy of decomposition for HL is higher than that for the polymer complexes.  相似文献   
974.
The development of contrast agents specifically designed for high‐field magnetic resonance imaging (MRI) is required because the relaxation efficiency of classic Gd(III) contrast agents significantly decreases with increasing magnetic field strengths. With an idea of exploring the unique structure of lanthanide (Ln) 15‐MC‐5 metallacrowns, we developed a series of water‐soluble Gd(III) aqua‐complexes, bearing aminohydroxamate (glycine, α‐alanine, α‐phenylalanine and α‐tyrosine) ligands, with increasing number of water molecules directly coordinated to the Gd(III) ion: Gd(H2O)4[15‐MCCu(II)Glyha‐5](Cl)3 ( 1 (Gd)), Gd(H2O)4[15‐MCCu(II)Alaha‐5](Cl)3 ( 2 (Gd)), Gd(H2O)3[15‐MCCu(II)Phalaha‐5](Cl)3 ( 3 (Gd)) and Gd(H2O)3[15‐MCCu(II)Tyrha‐5](Cl)3 ( 4 (Gd)). In these systems, the Ln(III) central ion is coordinated by five oxygen donor atoms of the ligands and three or four inner‐sphere water molecules. The X‐ray crystal structure of metallacrown Ln(H2O)3,4[15‐MCCu(II)Rha‐5]3+ agrees with density functional theory predictions. The calculations demonstrate that the exchange of coordinated water molecules can proceed easily, resulting in increased relaxivity parameters. The longitudinal relaxivities (r1) of 1 (Gd)– 4 (Gd) in water at ultrahigh magnetic field of 9.4 T were determined to be 11.5, 14.8, 13.9 and 12.2 mM?1 s?1, respectively. The ability to increase the number of Ln(III) inner‐sphere water molecules up to four, the planar metallacrown structure and the rich hydration shell due to strong hydrogen bonds between the [15‐MC‐5] moiety and bulk water molecules provide new opportunities for potential MRI applications.  相似文献   
975.
976.
本文深入分析了智能天线应用中广播波束成形权值反向求解的工程优化问题,引入单纯形算法对传统遗传算法进行改进并提出了一种新的单纯形遗传算法。通过具体应用验证,实现了较好自动求解权值的目的。同时,本算法也可在其他网络规划和网络优化等寻优问题中参考使用。  相似文献   
977.
A new class of high‐performance resins of combined molecular structure of both traditional phenolics and benzoxazines has been developed. The monomers termed as methylol‐functional benzoxazines were synthesized through Mannich condensation reaction of methylol‐functional phenols and aromatic amines, including methylenedianiline (4,4′‐diaminodiphenylmethane) and oxydianiline (4,4′‐diaminodiphenyl ether), in the presence of paraformaldehyde. For comparison, other series of benzoxazine monomers were prepared from phenol, corresponding aromatic amines, and paraformaldehyde. The as‐synthesized monomers are characterized by their high purity as judged from 1H NMR and Fourier transform infrared spectra. Differential scanning calorimetric thermograms of the novel monomers show two exothermic peaks associated with condensation reaction of methylol groups and ring‐opening polymerization of benzoxazines. The position of methylol group relative to benzoxazine structure plays a significant role in accelerating polymerization. Viscoelastic and thermogravimetric analyses of the crosslinked polymers reveal high Tg (274–343 °C) and excellent thermal stability when compared with the traditional polybenzoxazines. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
978.
A semicrystalline inorganic–organic hybrid crosslinked network containing polyhedral oligomeric silsesquioxane (POSS) cores was constructed by the unusual hydrosilylation of the terminal vinyl groups of an internal acetylene‐containing silane linker by a POSS monomer. Products from the thermal treatments of this network in either argon or air at 250, 550, and 1000 °C, respectively, were characterized by Fourier transform infrared, Solid‐state 13C and 29Si magic angle spinning NMR, X‐ray diffraction and XPS analyses. The highly symmetrically functionalized POSS silica clusters, in the fluorite silica phase, in the network were found to remain unchanged on thermal treatment possibly due to the shielding of the silica core by the functionalities and a cancellation of thermal stresses on the silica core. Stabilization of the metastable α‐cristobalite phase, which is typically formed on cooling by a β‐ to α‐transition of the β‐cristobalite phase formed above 1400 °C, was observed in the amorphous regions in the network sample treated only to 1000 °C in air. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
979.
Poly(ether carbonate)s (PPCs) with carbonate unit (CU) content ranging from 57.8 to 97.1% and number average molecular weight (Mn) around 100 kg/mol were conveniently prepared via copolymerization of CO2 and propylene oxide under combinatorial catalyst of rare earth ternary (RET) complex and double metal cyanide (DMC) complex. Enhancement of catalytic activity and reduction of propylene carbonate byproduct were realized due to synergetic effect of the two metal catalysts, where DMC can be activated in the presence of RET. Solubility fractionation confirmed that the obtained PPCs were copolymers, not physical blends of each polymer. Thermal performances of the PPCs were closely related to their CU content, their glass transition temperatures (Tg) were tunable in the range of 6.7–36.3 °C, which decreased with decreasing CU content, while their thermal stabilities were enhanced significantly, an increase of 50.5 °C in 50% weight loss temperature was observed when CU content decreased from 97.1 to 57.8%. Both shear storage modulus and complex viscosity increased with increasing CU content, which became more obvious at lower frequency, featuring well with the CU content in the PPCs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
980.
The reactions of group 14 tetrachlorides MCl4 (M=Si, Ge, Sn) with oleum (65 % SO3) at elevated temperatures lead to the unique complex ions [M(S2O7)3]2?, which show the central M atoms in coordination with three chelating S2O72? groups. The mean distances M? O within the anions increase from 175.6(2)–177.5(2) pm (M=Si) to 186.4(4)–187.7(4) pm (M=Ge) to 201.9(2)–203.5(2) pm (M=Sn). These distances are reproduced well by DFT calculations. The same calculations show an increasing positive charge for the central M atom in the row Si, Ge, Sn, which can be interpreted as the decreasing covalency of the M? O bonds. For the silicon compound (NH4)2[Si(S2O7)3], 29Si solid‐state NMR measurements have been performed, with the results showing a signal at ?215.5 ppm for (NH4)2[Si(S2O7)3], which is in very good agreement with theoretical estimations. In addition, the vibrational modes within the [MO6] skeleton have been monitored by Raman spectroscopy for selected examples, and are well reproduced by theory. The charge balance for the [M(S2O7)3]2? ions is achieved by monovalent A+ counter ions (A=NH4, Ag), which are implemented in the syntheses in the form of their sulfates. The sizes of the A+ ions, that is, their coordination requirements, cause the crystallographic differences in the crystal structures, although the complex [M(S2O7)3]2? ions remain essentially unaffected with the different A+ ions. Furthermore, the nature of the A+ ions influences the thermal behavior of the compounds, which has been monitored for selected examples by thermogravimetric differential thermal analysis (DTA/TG) and XRD measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号