首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   420篇
  免费   110篇
  国内免费   32篇
化学   89篇
晶体学   8篇
力学   1篇
数学   2篇
物理学   210篇
无线电   252篇
  2024年   6篇
  2023年   58篇
  2022年   15篇
  2021年   54篇
  2020年   56篇
  2019年   32篇
  2018年   19篇
  2017年   21篇
  2016年   25篇
  2015年   15篇
  2014年   16篇
  2013年   18篇
  2012年   23篇
  2011年   18篇
  2010年   10篇
  2009年   19篇
  2008年   12篇
  2007年   12篇
  2006年   27篇
  2005年   14篇
  2004年   8篇
  2003年   5篇
  2002年   10篇
  2001年   8篇
  2000年   12篇
  1999年   9篇
  1998年   7篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   5篇
  1986年   1篇
  1982年   1篇
排序方式: 共有562条查询结果,搜索用时 15 毫秒
21.
22.
采用水相法合成ZnO花-棒(ZFRs)有序阵列结构,同时利用离子交换法,制备Ag和Ag2Se量子点共敏化光ZnO光阳极(AA-ZFRs)。通过扫描电子显微镜(SEM)、X射线粉末衍射(XRD)、X射线能量色散谱(EDS)和透射电子显微镜(TEM)等手段对样品进行了分析和表征,并测试其光电化学特性以及量子效应。结果表明,Ag-Ag2Se共敏化ZnO花-棒三维有序结构对太阳光的吸收范围延展至近红外区(750 nm),并且在敏化层与ZnO基质界面形成异质结,有效的抑制光生电子-空穴对复合,增强光转换量子效应,从而提高光电化学性能,开路电压达到-0.77 V,短路电流为0.64 mA。  相似文献   
23.
24.
A combined method for structural characterization of strained epitaxial heterostructures involving different techniques such as Rutherford backscattering spectrometry (RBS), multiple crystal X-ray diffractometry (MCD) and transmission electron microscopy (TEM) is presented. In order to obtain a complete characterization of the analysed structure, three different quantities are measured independently: the epilayer thickness, the density of misfit dislocations which may appear at the interface, and the significant components of the strain tensor, mainly the tetragonal distortion, affecting the epilayer lattice. In this way the thermodynamic state and the mechanisms of plastic deformation of the structures can be fully investigated. In this contribution we present and discuss the experimental results concerning a set of InP/GaAs samples having different layer thicknesses ranging from 5 to 500 nm. The thickness of the samples has been determined by RBS. Measurements of in-plane strain and tetragonal distortion have been performed by MCD and RBS-channelling respectively, finally TEM has been used for determining the defects densities and distribution.  相似文献   
25.
A generic modular synthetic strategy for the fabrication of a series of binary‐ternary group II‐VI and group I‐III‐VI coupled semiconductor nano‐heterostructures is reported. Using Ag2Se nanocrystals first as a catalyst and then as sacrificial seeds, four dual semiconductor heterostructures were designed with similar shapes: CdSe‐AgInSe2, CdSe‐AgGaSe2, ZnSe‐AgInSe2, and ZnSe‐AgGaSe2. Among these, dispersive type‐II heterostructures are further explored for photocatalytic hydrogen evolution from water and these are observed to be superior catalysts than the binary or ternary semi‐conductors. Details of the chemistry of this modular synthesis have been studied and the photophysical processes involved in catalysis are investigated.  相似文献   
26.
In the present study, pristine BiVO4, TiO2 and BiVO4/TiO2 core-shell heterostructured nanoparticles are prepared by hydrothermal methods and studied for structural, morphological, optical, photoelectrochemical water splitting and photocatalytic degradation of methylene blue as an organic pollutant. Both pristine BiVO4 and TiO2 exhibit poor PEC and PC performance under visible light illumination. However, an enhanced PEC and PC activity in BiVO4/TiO2 core-shell heterostructure is observed due to high solar energy absorption and superior charge separation properties in core-shell nanoparticles. The photoelectrode prepared using BiVO4/TiO2 core-shell nanoparticles exhibit a photocathode behavior and produced cathodic photocurrent, however, the pristine BiVO4 and TiO2 photoelectrodes act as photoanode and produced anodic photocurrent. This behavior of change in current direction is also observe in the Mott-Schottky analysis where the BiVO4/TiO2 core-shell nanoparticles photoelectrode exhibits the positive slow showing p-type semiconducting behavior. The change in cathodic photoresponse in core-shell nanoparticles in comparison to anodic photoresponse of BiVO4 and TiO2 nanoparticles is explained in terms of the variations in the work function values. These results highlight the advantages of core-shell nanoparticle of suitable materials for photocatalytic and photoelectrochemical applications.  相似文献   
27.
The photoluminescence (PL) at low temperature of three delta-doped AlGaAs/GaAs heterostructures is investigated under continuous and pulsed excitations. The PL under continuous excitations allows the identification of the trapping centres and probes the carrier's transfer to the GaAs channel. The time-resolved photoluminescence (TRPL) inquires about carrier dynamics and gives radiative lifetimes of different levels. The DX level shows two time constants of the intensity decay relating the splitting of the valence band under impurity strains which reduce the crystal symmetry. The two time constants evolve with temperature and exhibit an increase near T=50 K.  相似文献   
28.
A general, system-independent, formulation of the parabolic Schrödinger–Poisson equation is presented for a charged hard wall in the limit of complete screening by the ground state. It is solved numerically using iteration and asymptotic boundary conditions. The solution gives a simple relation between the band bending and sheet charge density at an interface. Approximative analytical expressions for the potential profile and wave function are developed based on properties of the exact solution. Specific tests of the validity of the assumptions leading to the general solution are made. The assumption of complete screening by the ground state is found be a limitation; however, the general solution provides a fair approximate account of the potential profile when the bulk is doped. The general solution is further used in a simple model for the potential profile of an AlN/GaN barrier structure. The result compares well with the solution of the full Schrödinger–Poisson equation.  相似文献   
29.
The synthesis of new Xenes and their potential applications prototypes have achieved significant milestones so far. However, to date the realization of Xene heterostructures in analogy with the well known van der Waals heterostructures remains an unresolved issue. Here, a Xene heterostructure concept based on the epitaxial combination of silicene and stanene on Ag(111) is introduced, and how one Xene layer enables another Xene layer of a different nature to grow on top is demonstrated. Single-phase (4 × 4) silicene is synthesized using stanene as a template, and stanene is grown on top of silicene on the other way around. In both heterostructures, in situ and ex situ probes confirm layer-by-layer growth without intercalations and intermixing. Modeling via density functional theory shows that the atomic layers in the heterostructures are strongly interacting, and hexagonal symmetry conservation in each individual layer is sequence selective. The results provide a substantial step toward currently missing Xene heterostructures and may inspire new paths for atomic-scale materials engineering.  相似文献   
30.
Graphene-based heterostructure composite is a new type of advanced sensing material that includes composites of graphene with noble metals/metal oxides/metal sulfides/polymers and organic ligands. Exerting the synergistic effect of graphene and noble metals/metal oxides/metal sulfides/polymers and organic ligands is a new way to design advanced gas sensors for nitrogen-containing gas species including NH3 and NO2 to solve the problems such as poor stability, high working temperature, poor recovery, and poor selectivity. Different fabrication methods of graphene-based heterostructure composite are extensively studied, enabling massive progress in developing chemiresistive-type sensors for detecting the nitrogen-containing gas species. With the components of noble metals/metal oxides/metal sulfides/polymers and organic ligands which are composited with graphene, each material has its attractive and unique electrical properties. Consequently, the corresponding composite formed with graphene has different sensing characteristics. Furthermore, working ambient gas and response type can affect gas-sensitive characteristic parameters of graphene-based heterostructure composite sensing materials. Moreover, it requires particular attention in studying gas sensing mechanism of graphene-based heterostructure composite sensing materials for nitrogen-containing gas species. This review focuses on related scientific issues such as material synthesis methods, sensing performance, and gas sensing mechanism to discuss the technical challenges and several perspectives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号