首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3414篇
  免费   1495篇
  国内免费   628篇
化学   2978篇
晶体学   49篇
力学   85篇
综合类   5篇
数学   15篇
物理学   1280篇
无线电   1125篇
  2024年   30篇
  2023年   146篇
  2022年   229篇
  2021年   310篇
  2020年   436篇
  2019年   390篇
  2018年   382篇
  2017年   465篇
  2016年   536篇
  2015年   506篇
  2014年   538篇
  2013年   549篇
  2012年   357篇
  2011年   219篇
  2010年   115篇
  2009年   72篇
  2008年   50篇
  2007年   31篇
  2006年   19篇
  2005年   21篇
  2004年   9篇
  2003年   25篇
  2002年   16篇
  2001年   17篇
  2000年   8篇
  1999年   10篇
  1998年   13篇
  1997年   2篇
  1996年   6篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1983年   1篇
  1979年   1篇
  1957年   1篇
排序方式: 共有5537条查询结果,搜索用时 15 毫秒
31.
《Arabian Journal of Chemistry》2020,13(11):7970-7977
The World Health Organization (WHO) has recommended the fluoride level in drinking water (1.5 mg/L) and defluoridation of water is an essential to remove of fluoride from contaminated water. Hence, the effective and rapid adsorbent Cuprous oxide-reduced graphene oxide (Cu2O-RGO) composite was developed to overwhelm this concern. Sonochemical approach was adopted for the synthesis of desirable composite which was further characterized by XRD, FTIR, SEM, and EDS. The optimized composite (30 mg) shown the significant adsorption capacity of 34 mg/g of F solution (pH = 9), 70% removal of F solution from real experiment and Freundlich model was fitted than Langmuir and Temkin isotherms. The experimental results corroborate that adsorbent is the most effective for removal of fluoride from its polluted water.  相似文献   
32.
低压供热技术具有安全系数高和节能降耗等优势,因而成为石化稠油长输管线、风力发电叶片冬季防覆冰和室内供暖等领域的研究热点之一。本文制备了一系列低压供热涂层材料,研究不同碳功能填料对涂层发热速率、发热功率及最高发热温度的影响规律,并揭示石墨烯和碳纤维对提升涂层材料热性能的协同作用。其中石墨烯纳米片的还原程度对材料热性能具有重要影响,降低其表面官能团密度对提升涂层供热特性具有促进作用,但是官能团密度过低会导致石墨烯纳米片的团聚现象,引起涂层发热不均匀。加入适量碳纤维可以提高石墨烯的均匀分散性,提升发热速率。优化石墨烯纳米片和碳纤维的比例后,采用24V电压驱动时,涂层材料的发热速率达到7.1℃·s-1,功率密度为800W·m-2,最高发热温度为124℃。  相似文献   
33.
Nickel (Ni)-lignin nanocomposites were synthesized from nickel nitrate and kraft lignin then catalytically graphitized to few-layer graphene-encapsulated nickel nanoparticles (Ni@G). Ni@G nanoparticles were used for catalytic decomposition of methane (CDM) to produce COx-free hydrogen and graphene nanoplatelets. Ni@G showed high catalytic activity for methane decomposition at temperatures of 800 to 900 °C and exhibited long-term stability of 600 min time-on-stream (TOS) without apparent deactivation. The catalytic stability may be attributed to the nickel dispersion in the Ni@G sample. During the CDM reaction process, graphene shells over Ni@G nanoparticles were cracked and peeled off the nickel cores at high temperature. Both the exposed nickel nanoparticles and the cracked graphene shells may participate the CDM reaction, making Ni@G samples highly active for CDM reaction. The vacancy defects and edges in the cracked graphene shells serve as the active sites for methane decomposition. The edges are continuously regenerated by methane molecules through CDM reaction.  相似文献   
34.
We prepared hyper-oxidized graphene (HOG) as a form of graphene derivative by additional oxidation of graphene oxide (GO) sheets. HOG, which formed more functional groups and isolated conjugated clusters on the sheets, accordingly showed high solubility in water and alcohols, high transmittance and film transparence, longer fluorescence decay constant time, and enhanced fluorescence in states of solution and solid. By contrast, GO has much weaker fluorescence in solution and its fluorescence is totally quenched in solid. The influences of concentration, metallic ions, and pH on HOG fluorescence in aqueous solution were also investigated in detail. Due to HOG’s strong fluorescence, direct visualization was realized on substrates and in solution. In addition, direct 3D fluorescence visualizations of HOG phase in polymer composites were achieved. These results show the great potential of HOG in a broad range of applications, from biological labeling, probes, and drug carriers to high-performance composites and nanomanipulation.  相似文献   
35.
The combined nucleation effect of graphene oxide (GO) and calcium pimelate (CaPi) which are chemically compound together (expressed in GO ? CaPi) in isotactic polypropylene (iPP) was investigated. Fourier transform infrared (FTIR), X‐ray diffraction (XRD) and thermogravimetric analysis (TGA) verified that CaPi was chemically compound with GO by chelate bonds. The crystallization behavior and crystalline morphologies of iPP nucleated with different mass ratio of GO and CaPi were investigated. The crystallization peak temperature of iPP nucleated with 0.2 wt% GO ? CaPi with the mass ratio of 1:5 (GO1 ? C5) was increased by 8.3°C when compared with that of pure iPP, and the relative content of β‐crystal reached up to 0.7962. Whereas, the crystallization peak temperature of iPP nucleated with 0.2 wt% GO and CaPi which are blended together by mechanical force (expressed in GO + CaPi) with the mass ratio of 1:5 (GO1 + C5) was only increased by 5.0°C. It was attributed to that the aggregation of GO + CaPi caused the decrease of the crystallization peak temperature, while the GO1 ? C5 uniformly dispersed in the iPP matrix. Unexpectedly, the relative content of β‐crystal of iPP nucleated with 0.02 wt% GO1 ? C5 reached up to 0.8094, and the crystallization peak temperature was increased by 6.7°C compared with that of pure iPP. Meanwhile, the impact strength, tensile strength and heat deflection temperature of iPP nucleated with 0.02 wt% GO1 ? C5 increased by almost 45.86%, 2.03% and 7.7°C, respectively. The iPP nucleated with GO1 ? C5 obtained a balance between stiffness and toughness and the thermo‐mechanical property of nucleated iPP was improved.  相似文献   
36.
In this study, graphene nanosheets (GNSs) were adopted as an adsorbent to investigate their characterizations and performance for adsorbing benzene and toluene in aqueous solutions. In order to determine the best fit model for each considered system, nonlinear regressions were used. Experimental data of adsorption were corroborated by the combined Langmuir–Freundlich (Sips) models for the isotherms and pseudo‐first‐order model for the kinetics. As a result, GNSs displayed high affinity to the aromatic hydrocarbons such as benzene and toluene. The high affinity was dominated by π–π interactions to the flat surface and the sieving effect of the powerful groove regions formed by wrinkles on GNS's surfaces. Hydrophobic properties and molecular sizes of benzene and toluene affected the adsorption of GNS. In addition, the favorable adsorption of toluene possibly was due to the increase in the molecular weight, decrease in the solubility, and the increase in the boiling point. A comparative study on the benzene and toluene adsorption revealed that favorable adsorption of GNSs compared with that of carbon nanotubes was consistent with the order of physical properties such as specific surface area and pore's volume. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
37.
Low-grade heat energy recycling is the key technology of waste-heat utilization, which needs to be improved. Here, we use a zinc-assisted solid-state pyrolysis route to prepare zinc-guided 3D graphene (ZnG), a 3D porous graphene with the interconnected structure. The obtained ZnG, with a high specific surface area of 1817 m2·g−1 and abundant micropores and mesopores, gives a specific capacitance of 139 F·g−1 in a neutral electrolyte when used as electrode material for supercapacitors. At a high current density of 8 A·g−1, the capacitance retention is 93% after 10,000 cycles. When ZnG is used for thermally chargeable supercapacitors, the thermoelectric conversion of the low-grade heat energy is successfully realized. This work thus provides a demonstration for low-grade heat energy conversion.  相似文献   
38.
Abstract

In this study, the photovoltaic organic-inorganic structures were created by deposition of poly(3,4-ethylenedioxythiophene) film doped by poly(styrenesulfonate) and reduced graphene oxide on the porous silicon/silicon substrate. Formation of the hybrid structure was confirmed by means of atomic-force microscopy and Fourier transform infrared spectroscopy. The current-voltage characteristics of the obtained structures were studied. It was found the increase of electrical conductivity and photo-induced signal in organic-inorganic structures. Temporal parameters and spectral characteristics of photoresponse in the 400–1100?nm wavelength range were investigated. The widening of spectral photosensitivity in a short-wavelength range due to light absorption in various layers of the multijunction structure in comparison with single crystal silicon was revealed.  相似文献   
39.
Composite materials and their applications constitute a hot field of research nowadays due to the fact that they comprise a combination of the unique properties of each component of which they consist. Very often, they exhibit better performance and properties compared to their combined building blocks. Graphene oxide (GO), as the most widely used derivative of graphene, has attracted widespread attention because of its excellent properties. Abundant oxygen-containing functional groups on GO can provide various reactive sites for chemical modification or functionalization of GO, which in turn can be used to develop novel GO-based composites. This review outlines the most recent advances in the field of novel dyes and pigments encompassing GO as a key ingredient or as an important cofactor. The interactions of graphene with other materials/compounds are highlighted. The special structure and unique properties of GO have a great effect on the performance of fabricated hybrid dyes and pigments by enhancing the color performance of dyes, the anticorrosion properties of pigments, the viscosity and rheology of inks, etc., which further expands the applications of dyes and pigments in dyeing, optical elements, solar-thermal energy storage, sensing, coatings, and microelectronics devices. Finally, challenges in the current development as well as the future prospects of GO-based dyes and pigments are also discussed. This review provides a reference for the further exploration of novel dyes and pigments.  相似文献   
40.
We study the two-dimensional flow of foams around a circular obstacle within a long channel. In experiments, we confine the foam between liquid and glass surfaces. In simulations, we use a deterministic software, the Surface Evolver, for bubble details and a stochastic one, the extended Potts model, for statistics. We adopt a coherent definition of liquid fraction for all studied systems. We vary it in both experiments and simulations, and determine the yield drag of the foam, that is, the force exerted on the obstacle by the foam flowing at very low velocity. We find that the yield drag is linear over a large range of the ratio of obstacle to bubble size, and is independent of the channel width over a large range. Decreasing the liquid fraction, however, strongly increases the yield drag; we discuss and interpret this dependence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号