首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4004篇
  免费   789篇
  国内免费   270篇
化学   3471篇
晶体学   2篇
力学   42篇
综合类   139篇
数学   187篇
物理学   339篇
无线电   883篇
  2024年   17篇
  2023年   138篇
  2022年   181篇
  2021年   330篇
  2020年   297篇
  2019年   228篇
  2018年   172篇
  2017年   180篇
  2016年   303篇
  2015年   275篇
  2014年   328篇
  2013年   363篇
  2012年   288篇
  2011年   305篇
  2010年   216篇
  2009年   223篇
  2008年   211篇
  2007年   207篇
  2006年   162篇
  2005年   128篇
  2004年   119篇
  2003年   81篇
  2002年   62篇
  2001年   40篇
  2000年   39篇
  1999年   37篇
  1998年   17篇
  1997年   17篇
  1996年   7篇
  1995年   18篇
  1994年   25篇
  1993年   6篇
  1992年   15篇
  1991年   8篇
  1990年   4篇
  1989年   4篇
  1988年   6篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1971年   1篇
排序方式: 共有5063条查询结果,搜索用时 125 毫秒
191.
Here, a novel strategy of formulating efficient polymeric carriers based on the already described INU-IMI-DETA for gene material whose structural, functional, and biological properties can be modulated and improved was successfully investigated. In particular, two novel derivatives of INU-IMI-DETA graft copolymer were synthesized by chemical functionalisation with epidermal growth factor (EGF) or polyethylenglycol (PEG), named INU-IMI-DETA-EGF and INU-IMI-DETA-PEG, respectively, in order to improve the performance of already described “inulin complex nanoaggregates” (ICONs). The latter were thus prepared by appropriately mixing the two copolymers, by varying each component from 0 to 100 wt% on the total mixture, named EP-ICONs. It was seen that the ability of the INU-IMI-DETA-EGF/INU-IMI-DETA-PEG polymeric mixture to complex siGL3 increases with the increase in the EGF-based component in the EP-ICONs and, for each sample, with the increase in the copolymer:siRNA weight ratio (R). On the other hand, the susceptibility of loaded siRNA towards RNase decreases with the increase in the pegylated component in the polymeric mixture. At all R values, the average size and the zeta potential values are suitable for escaping from the RES system and suitable for prolonged intravenous circulation. By means of biological characterisation, it was shown that MCF-7 cells are able to internalize mainly the siRNA-loaded into EGF-decorated complexes, with a significant difference from ICONs, confirming its targeting function. The targeting effect of EGF on EP-ICONs was further demonstrated by a competitive cell uptake study, i.e., after cell pre-treatment with EGF. Finally, it was shown that the complexes containing both EGF and PEG are capable of promoting the internalisation and therefore the transfection of siSUR, a siRNA acting against surviving mRNA, and to increase the sensitivity to an anticancer agent, such as doxorubicin.  相似文献   
192.
Porphyrinic compounds are widespread in nature and play key roles in biological processes such as oxygen transport in blood, enzymatic redox reactions or photosynthesis. In addition, both naturally derived as well as synthetic porphyrinic compounds are extensively explored for biomedical and technical applications such as photodynamic therapy (PDT) or photovoltaic systems, respectively. Their unique electronic structures and photophysical properties make this class of compounds so interesting for the multiple functions encountered. It is therefore not surprising that optical methods are typically the prevalent analytical tool applied in characterization and processes involving porphyrinic compounds. However, a wealth of complementary information can be obtained from NMR spectroscopic techniques. Based on the advantage of providing structural and dynamic information with atomic resolution simultaneously, NMR spectroscopy is a powerful method for studying molecular interactions between porphyrinic compounds and macromolecules. Such interactions are of special interest in medical applications of porphyrinic photosensitizers that are mostly combined with macromolecular carrier systems. The macromolecular surrounding typically stabilizes the encapsulated drug and may also modify its physical properties. Moreover, the interaction with macromolecular physiological components needs to be explored to understand and control mechanisms of action and therapeutic efficacy. This review focuses on such non-covalent interactions of porphyrinic drugs with synthetic polymers as well as with biomolecules such as phospholipids or proteins. A brief introduction into various NMR spectroscopic techniques is given including chemical shift perturbation methods, NOE enhancement spectroscopy, relaxation time measurements and diffusion-ordered spectroscopy. How these NMR tools are used to address porphyrin–macromolecule interactions with respect to their function in biomedical applications is the central point of the current review.  相似文献   
193.
Currently, the treatment of fungal keratitis (FK) infection remains a major clinical challenge, and current investigations, development in the field have widened approaches. The present work was aimed to synthesis a dual role novel carrier system consisting of Ofloxacin (OFL) and Nepafenac (NF) hydrophobic drugs incorporated in Zinc ions (Zn2+) tagged Polyvinyl acetate phthalate (PVAP) grafted Polypyrrole (PPy) carrier (OFL&NF-Zn2+/PVAP-g-PPy) to treat FK infection. The FT-IR, SEM, and dynamic light scattering revealed the carrier chemical structure, spherical shape, and the average particle size of 691.3 ± 1 nm. The carrier’s entrapment of OFL and NF drugs has been observed at 78.23% and 60.03%. The carrier exhibited significant antifungal activity at the concentration of 58 mg mL−1 against Candida albicans which was lower than that of the free ofloxacin. The cell viability results suggested up to 70 μg/mL concentration of OFL&NF-Zn2+/PVAP-g-PPy did not induce any cytotoxicity on cultured ADSC cells at 48 h treatment time. It confirms the fact that the OFL&NF-Zn2+/PVAP-g-PPy carrier showed good biocompatibility and good anti-fungal activity. Thus the carriers provide a significant potential to improve the bioavailability of topically applied drugs to treat fungal eye infection.  相似文献   
194.
Lipid nanoparticle (LNP) formulations of messenger RNA (mRNA) have demonstrated high efficacy as vaccines against SARS-CoV-2. The success of these nanoformulations underscores the potential of LNPs as a delivery system for next-generation biological therapies. In this article, we highlight the key considerations necessary for engineering LNPs as a vaccine delivery system and explore areas for further optimisation. There remain opportunities to improve the protection of mRNA, optimise cytosolic delivery, target specific cells, minimise adverse side-effects and control the release of RNA from the particle. The modular nature of LNP formulations and the flexibility of mRNA as a payload provide many pathways to implement these strategies. Innovation in LNP vaccines is likely to accelerate with increased enthusiasm following recent successes; however, any advances will have implications for a broad range of therapeutic applications beyond vaccination such as gene therapy.  相似文献   
195.
Nature has become one of the main sources of exploration for researchers that search for new potential molecules to be used in therapy. Polyphenols are emerging as a class of compounds that have attracted the attention of pharmaceutical and biomedical scientists. Thanks to their structural peculiarities, polyphenolic compounds are characterized as good scavengers of free radical species. This, among other medicinal effects, permits them to interfere with different molecular pathways that are involved in the inflammatory process. Unfortunately, many compounds of this class possess low solubility in aqueous solvents and low stability. Ocular pathologies are spread worldwide. It is estimated that every individual at least once in their lifetime experiences some kind of eye disorder. Oxidative stress or inflammatory processes are the basic etiological mechanisms of many ocular pathologies. A variety of polyphenolic compounds have been proved to be efficient in suppressing some of the indicators of these pathologies in in vitro and in vivo models. Further application of polyphenolic compounds in ocular therapy lacks an adequate formulation approach. Therefore, more emphasis should be put in advanced delivery strategies that will overcome the limits of the delivery site as well as the ones related to the polyphenols in use. This review analyzes different drug delivery strategies that are employed for the formulation of polyphenolic compounds when used to treat ocular pathologies related to oxidative stress and inflammation.  相似文献   
196.
Flaky graphene oxide (GO) nanoparticles (NPs) were synthesized using Hummer’s method and then capped with polyethylene glycol (PEG) by an esterification reaction, then loaded with Nigella sativa (N. sativa) seed extract. Aiming to investigate their potential use as a smart drug delivery system against Staphylococcus aureus and Escherichia coli, the spectral and structural characteristics of GO-PEG NPs were comprehensively analyzed by XRD, AFM, TEM, FTIR, and UV- Vis. XRD patterns revealed that GO-PEG had different crystalline structures and defects, as well as a higher interlayer spacing. AFM results showed GONPs with the main grain size of 24.41 nm, while GONPs–PEG revealed graphene oxide aggregation with the main grain size of 287.04 nm after loading N. sativa seed extract, which was verified by TEM examination. A strong OH bond appeared in FTIR spectra. Furthermore, UV- Vis absorbance peaks at (275, 284, 324, and 327) nm seemed to be correlated with GONPs, GO–PEG, N. sativa seed extract, and GO –PEG- N. sativa extract. The drug delivery system was observed to destroy the bacteria by permeating the bacterial nucleic acid and cytoplasmic membrane, resulting in the loss of cell wall integrity, nucleic acid damage, and increased cell-wall permeability.  相似文献   
197.
Abstract

A novel drug-polysaccharide conjugate with konjac glucomannan (KGM) as a drug carrier was fabricated through the esterification of ibuprofen (IBU), an anti-inflammatory drug, with KGM. The influences of the reaction conditions, such as the amount of ibuprofen acryl chloride, reaction time, reaction temperature, and the amount of catalyst, on the degree of substitution were investigated. KGM ibuprofen ester (KGM-IBU) was characterized by Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD), solid-state 13C NMR, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The hydrophobic structure of IBU in KGM-IBU was proven by the fluorescence emission spectra of pyrene. In addition, by using commercially available ibuprofen sustained-release capsules (IBU-SRC) as a control, the in vitro controlled release performance of KGM-IBU was evaluated. The cumulative release of IBU-SRC within 36?h was 94%, while that of KGM-IBU within 36?h was 77%. The results showed that KGM-IBU had better sustained-release performance without a burst release effect. The obtained products could be used as a potential biocompatible sustained-release drug delivery system.  相似文献   
198.
The impact of lifestyle on shaping the genome content of an organism is a well-known phenomenon and cytochrome P450 enzymes (CYPs/P450s), heme-thiolate proteins that are ubiquitously present in organisms, are no exception. Recent studies focusing on a few bacterial species such as Streptomyces, Mycobacterium, Cyanobacteria and Firmicutes revealed that the impact of lifestyle affected the P450 repertoire in these species. However, this phenomenon needs to be understood in other bacterial species. We therefore performed genome data mining, annotation, phylogenetic analysis of P450s and their role in secondary metabolism in the bacterial class Gammaproteobacteria. Genome-wide data mining for P450s in 1261 Gammaproteobacterial species belonging to 161 genera revealed that only 169 species belonging to 41 genera have P450s. A total of 277 P450s found in 169 species grouped into 84 P450 families and 105 P450 subfamilies, where 38 new P450 families were found. Only 18% of P450s were found to be involved in secondary metabolism in Gammaproteobacterial species, as observed in Firmicutes as well. The pathogenic or commensal lifestyle of Gammaproteobacterial species influences them to such an extent that they have the lowest number of P450s compared to other bacterial species, indicating the impact of lifestyle on shaping the P450 repertoire. This study is the first report on comprehensive analysis of P450s in Gammaproteobacteria.  相似文献   
199.
The present study aimed to develop n-propyl gallate (PG)-encapsulated liposomes through a novel direct pouring method using the quality-by-design (QbD) approach. A further aim was to coat liposomes with hyaluronic acid (HA) to improve the stability of the formulation in nasal mucosa. The QbD method was used for the determination of critical quality attributes in the formulation of PG-loaded liposomes coated with HA. The optimized formulation was determined by applying the Box–Behnken design to investigate the effect of composition and process variables on particle size, polydispersity index (PDI), and zeta potential. Physiochemical characterization, in vitro release, and permeability tests, as well as accelerated stability studies, were performed with the optimized liposomal formulation. The optimized formulation resulted in 90 ± 3.6% encapsulation efficiency, 167.9 ± 3.5 nm average hydrodynamic diameter, 0.129 ± 0.002 PDI, and −33.9 ± 4.5 zeta potential. Coated liposomes showed significantly improved properties in 24 h in an in vitro release test (>60%), in vitro permeability measurement (420 μg/cm2) within 60 min, and also in accelerated stability studies compared to uncoated liposomes. A hydrogen-peroxide-scavenging assay showed improved stability of PG-containing liposomes. It can be concluded that the optimization of PG-encapsulated liposomes coated with HA has great potential for targeting several brain diseases.  相似文献   
200.
The goal of the present study is to elucidate the intragastrointestinal fate of micellar delivery systems by monitoring fluorescently labeled different micelles and the model drug paclitaxel (PTX). Both in vitro and ex vivo leakage studies showed fast PTX release in fluids while micelles remained intact, except in fed-state simulated intestinal fluid and fasted-state pig intestinal fluid, thus referring to the intact absorption of micelles and PTX leakage in the gastrointestinal tract with d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) micelles showing higher stability than other micelles. All groups of micelles were absorbed intact in Caco-2 and Caco-2/HT29-MTX cell models and the absorption of TPGS micelles was found to be higher than other micelles. The transport of the micelles across Caco-2/Raji (1.6%–3.5%), Caco-2 (0.8%–1%), and Caco-2/HT29-MTX (0.58%–1%) cell monolayers further verified the absorption of micelles and their subsequent transport; however, more TPGS micelles transported across cell monolayers than other groups. Moreover, the histological examination also confirmed that micelles entered the enterocytes and were transported to basolateral tissues and TPGS showed the stronger ability of penetration than other groups. Thus, these results are succinctly presenting the absorption of intact micelles in GIT confirmed by imaging evidence with prior leakage of the drug, uptake by enterocytes and the transport of micelles that survive the digestion by enterocytes and mainly by microfold cells in material nature dependent way with TPGS showing better results than other groups. In conclusion, these results identify the mechanism by which the gastrointestinal tract processes micelles and point to the likely use of this approach in the design of micelles-based therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号