首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2299篇
  免费   560篇
  国内免费   239篇
化学   560篇
晶体学   94篇
力学   95篇
综合类   12篇
数学   341篇
物理学   1325篇
无线电   671篇
  2024年   4篇
  2023年   40篇
  2022年   55篇
  2021年   56篇
  2020年   72篇
  2019年   71篇
  2018年   93篇
  2017年   118篇
  2016年   125篇
  2015年   112篇
  2014年   179篇
  2013年   227篇
  2012年   183篇
  2011年   206篇
  2010年   157篇
  2009年   186篇
  2008年   171篇
  2007年   150篇
  2006年   132篇
  2005年   112篇
  2004年   118篇
  2003年   101篇
  2002年   74篇
  2001年   65篇
  2000年   56篇
  1999年   29篇
  1998年   33篇
  1997年   33篇
  1996年   21篇
  1995年   16篇
  1994年   14篇
  1993年   12篇
  1992年   7篇
  1991年   9篇
  1990年   9篇
  1989年   12篇
  1988年   6篇
  1987年   6篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有3098条查询结果,搜索用时 890 毫秒
71.
The diborene 1 was synthesized by reduction of a mixture of 1,2-di-9-anthryl-1,2-dibromodiborane(4) ( 6 ) and trimethylphosphine with potassium graphite. The X-ray structure of 1 shows the two anthryl rings to be parallel and their π(C14) systems perpendicular to the diborene π(B=B) system. This twisted conformation allows for intercalation of the relatively high-lying π(B=B) orbital and the low-lying π* orbital of the anthryl moiety with no significant conjugation, resulting in a small HOMO–LUMO gap (HLG) and ultimately a C−H borylation of the anthryl unit. The HLG of 1 was estimated to be 1.57 eV from the onset of the long wavelength band in its UV/Vis absorption spectrum (THF, λonset=788 nm). The oxidation of 1 with elemental selenium afforded diboraselenirane 8 in quantitative yield. By oxidative abstraction of one phosphine ligand by another equivalent of elemental selenium, the B−B and C1−H bonds of 8 were cleaved to give the cyclic 1,9-diborylanthracene 9 .  相似文献   
72.
CdSe quantum dots in aqueous medium using thioglycollic acid as capping agent have been synthesized. The reaction was carried out in an open atmosphere at pH of 12 and refluxed at 100 °C for 8 h. Selenium dioxide which is less expensive and less toxic has been used as a precursor for selenium source by replacing Se powder and sodium selenite. For characterization QD solutions was taken at different time intervals ranging from 15 min to 6 h. UV–Vis spectroscopy shows that there is a strong blue shift in the prepared quantum dots due to quantum confinement effect. Band gap calculated at different time intervals lies between 2.34 and 2.73 eV which is more than the bulk band gap 1.74 eV and with the increase in size of the QDs, bandgap also decreases. Photoluminescence study was carried out at excitation wavelength of 350 nm and results shows that with increase in time the peak position shift toward higher wavelength. FTIR spectroscopy shows peaks of thioglycollic acid. SEM micrographs of the prepared quantum dots show zero dimensional spherical particles in nm range. For electrical conductivity dc conductivity measurement has been done which shows that with increase of temperature conductivity increases, it confirms the semiconducting nature of the quantum dot. Conduction mechanism found to be mainly due to localized states.  相似文献   
73.
A direct band gap 2D corrugated layer lead chloride hybrid, [(CH3)4N]4Pb3Cl10 ( 1 ), shows analogous topology to the {Mg3F104−} layer in Cs4Mg3F10, and with the (CH3)4N+ cations locating in the inorganic layer voids and between the interlayers. Two reversible structural phase transitions occur in 1 at 225/210 K and 328/325 K upon heating/cooling, respectively. On going from the low- to intermediate-temperature phase, the space group changes from P21/c to Cmca, and the crystallographic axis perpendicular to the layers is doubled with the order–disorder transformation of (CH3)4N + cations between the interlayers. The intermediate- and high-temperature phases are isomorphic with similar cell parameters and packing structure; their main difference concerns the disorder degree of the (CH3)4N + cations between the interlayers. The two-step structural phase transitions lead to dielectric anomalies around the corresponding Tc. Interestingly, 1 shows multiband emission, originating from the recombination of exciton and emission of defects. Moreover, 1 exhibits divergent thermochromic luminescent features around the Tc on the intermediate to low temperature transition.  相似文献   
74.
Present paper reports the synthesis of CuO–SnO2 nanocomposite via sol–gel route as a sensing material for a liquefied petroleum gas (LPG). X-ray diffraction analysis confirmed the formation of CuO–SnO2 nanocomposite. Crystallite size was found 5 nm. The optical band gap of the nanocomposite was found 4.1 eV. The thin/thick films were fabricated using spin coating and screen printing technology respectively and investigated with the exposition of LPG at room temperature (25 °C). Surface morphology of the thin film exhibits that it has a number of gas adsorption sites. The sensitivities of the thick and thin film sensors were found 4.1 and 42 respectively. The response and recovery times of the fabricated film sensor were 180 and 200 s respectively. Maximum sensor response of thin film sensor was found 4100. Better sensitivity and percentage sensor response, small response and recovery times, and good reproducibility and stability recognize the fabricated thin film of CuO–SnO2 as a challenging material for the detection of LPG.  相似文献   
75.
76.
In this work, we performed first principles calculations based on self-consistent charge density functional tight-binding to investigate different mechanisms of band gap tuning of silicene. We optimized structures of silicene sheet, functionalized silicene with H, CH3 and F groups and nanoribbons with the edge of zigzag and armchair. Then we calculated electronic properties of silicene, functionalized silicene under uniaxial elastic strain, silicene nanoribbons and silicene under external electrical fields. It is found that the bond length and buckling value for relaxed silicene is agreeable with experimental and other theoretical values. Our results show that the band gap opens by functionalization of silicene. Also, we found that the direct band gap at K point for silicene changed to the direct band gap at the gamma point. Also, the functionalized silicene band gap decrease with increasing of the strain. For all sizes of the zigzag silicene nanoribbons, the band gap is near zero, while an oscillating decay occurs for the band gap of the armchair nanoribbons with increasing the nanoribbons width. At finally, it can be seen that the external electric field can open the band gap of silicene. We found that by increasing the electric field magnitude the band gap increases.  相似文献   
77.
ABSTRACT

Blue phase liquid crystals are soft 3D photonic crystals in which the liquid crystal molecules self-assemble to form a cubic structure with lattice spacing of a few hundred nanometers resulting in selective reflection of colours in the visible spectrum. The corresponding wavelength or the ‘photonic band gap’ can be tuned using various external stimuli such as thermal, electric, magnetic and optical fields. Here, we report efficient tuning of photonic band gap by utilising the combination of electric and optical fields in a blue phase liquid crystalline system. The studies indicate that the chirality of the medium has a direct bearing on the direction of the wavelength shift and the extent of the photonic band gap tunability. More importantly, the synergistic effect of the two fields helps in reversible tuning of the band gap.  相似文献   
78.
The electronic (energy gap and work function) as well as electrical properties (dipole moment, polarizability, and first hyperpolarizabilities) of the first-row transition metals decorated C24N24 cavernous nitride fullerene were explored using DFT calculations. The transition metals are decorated at N4 cavity of C24N24 fullerene. According to our spin polarized computations, the most stable spin state monotonically increases to sextet for Mn@C24N24 and thereafter dropped off gradually to singlet state for Zn@C24N24 system. The findings demonstrate that transition metals can remarkably decrease the HOMO-LUMO energy gap and work function values up to 63% and 21% of bare C24N24, respectively. As can be seen, when the Sc and Ti metals are located above the N4 cavity of fullerene, systems of enhanced static hyperpolarizabilities (β0) are delivered. These findings might provide an effective strategy to design high performance eletcro-optical materials based on carbon- nitride fullerene.  相似文献   
79.
80.
《Mendeleev Communications》2020,30(5):666-668
  1. Download : Download high-res image (112KB)
  2. Download : Download full-size image
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号