首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   481篇
  免费   55篇
  国内免费   34篇
化学   164篇
晶体学   18篇
力学   10篇
综合类   1篇
数学   1篇
物理学   111篇
无线电   265篇
  2024年   1篇
  2023年   9篇
  2022年   9篇
  2021年   21篇
  2020年   18篇
  2019年   11篇
  2018年   8篇
  2017年   18篇
  2016年   18篇
  2015年   24篇
  2014年   25篇
  2013年   19篇
  2012年   17篇
  2011年   23篇
  2010年   14篇
  2009年   29篇
  2008年   30篇
  2007年   24篇
  2006年   43篇
  2005年   21篇
  2004年   24篇
  2003年   25篇
  2002年   13篇
  2001年   13篇
  2000年   18篇
  1999年   14篇
  1998年   10篇
  1997年   8篇
  1996年   8篇
  1995年   12篇
  1994年   5篇
  1993年   9篇
  1992年   7篇
  1991年   2篇
  1990年   7篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有570条查询结果,搜索用时 873 毫秒
561.
In this work, an innovative solution was developed in order to make paper-based material, used traditionally in the packaging and labelling industries, compatible with the printing of functional conductive inks. In order to avoid the deterioration of the ink functionalities due to different paper properties, a UV-curing inkjettable primer layer was developed. This pre-treatment enables homogeneous surface properties such as smoothness, absorption capacity and surface energy to be obtained, for almost all the examined substrates. To confirm the positive impact of such pre-treatment, conductivity has been measured when using a new conductive ink, combining the processability of the PEDOT-PSS conductive polymer with the high electrical properties of carbon nanotubes (CNTs). Significant improvement has been measured for all paper materials and similar conductivity (close to reference PET film) has been obtained whatever the substrate involved. This pre-treatment now makes it possible to consider paper-based material as a potential substrate for printed electronics. In this case, the substrate adaptation technique offers an innovative solution to produce low-cost and flexible electronics.  相似文献   
562.
微纳金属光学结构制备技术及应用   总被引:6,自引:1,他引:5  
微纳光学结构制备技术一直是微纳光子学器件发展的技术瓶颈.针对微纳光学结构制备技术向小尺寸、高精度和广泛应用发展的趋势,报道了基于电子束、X射线和接近式光学的混合光刻制作微纳金属光学结构技术.针对微纳光子学器件复杂图形开发了微光刻数据处理体系,基于矢量扫描电子束光刻设备在自支撑薄膜上进行1×高分辨率图形形成,利用X射线光...  相似文献   
563.
采用热压烧结工艺制备了TiO2陶瓷填充聚四氟乙烯(PTFE)复合基板材料。系统研究了TiO2陶瓷粒径对PTFE/TiO2复合材料显微结构、热导率、微波介电性能的影响。结果表明,复合材料的密度随TiO2粒径的增大而增大,而介电损耗、吸水率则随着TiO2粒径的增大而减小;相对介电常数和热导率随粒径的增大先减小,当TiO2粒径D50为6.5μm时达到最小值,然后开始增大。当TiO2的粒径D50为11μm时,复合材料具有较高的相对介电常数(εr=6.8),较低的介电损耗(tanδ=0.001 2)和较高的热导率(0.533 W/(m·℃))。  相似文献   
564.
565.
One-dimensional (1D) tungsten oxide nanostructures show great potential for applications in the areas of batteries, photoelectrochemical water-splitting, electrochromic devices, catalysts and gas sensors. 1D tungsten oxide nanostructures are currently synthesized by physical or chemical vapor deposition, which are limited by low temperatures, the need for vacuum conditions, frequently expensive catalysts, and difficulty in scaling up for mass-production. These limitations, however, can be overcome by flame synthesis. Here, using a co-flow multi-element diffusion burner, we demonstrate the atmospheric, catalyst-free, rapid, mild and scalable flame synthesis of diverse, quasi-aligned, large density, and crystalline tungsten oxide nanostructures on a variety of substrates. Specifically, under fuel-rich conditions, monoclinic 1D W18O49 nanowires and nanotubes were grown on tungsten, iron, steel and fluorinated tin oxide (FTO) substrates, with controlled diameters ranging from 10 to 400 nm and axial growth rates ranging from 2 to 60 μm/h. Monoclinic 1D WO3 nanowires and nanotubes were grown, instead, on silicon and silicon dioxide substrates. Under fuel-lean conditions, diverse WO3 nanostructures, including monoclinic 1D nanowires, cubic 2D nanobelts and monoclinic 3D nanocones were grown on tungsten and FTO substrates. The success of this versatile flame synthesis method is attributed to the large tunability of several synthesis parameters, including the flame stoichiometry, the tungsten source and growth substrate temperatures, the tungsten oxide vapor concentration, and the material of the growth substrate. This flame synthesis method can be extended to synthesize other 1D transition metal oxides as well, enabling many large-scale electronic and energy conversion applications.  相似文献   
566.
在30kW级直流电弧等离子喷射化学气相沉积装置下,采用Ar-H2-CH4混合气体,通过控制工艺参数,在钼衬底上分别制备了普通微米自支撑膜及多层金刚石自支撑膜并对其进行研究.结果显示,同普通微米膜相比,多层膜体是由微米晶金刚石层和纳米晶金刚石层组成,表面光滑,微米层与纳米层间具有相互嵌套式的界面;多层膜中各层膜体的内应力沿生长方向有明显变化,出现一个从压应力到拉应力变化的过程;在沉积过程中,随着层数变化,膜体的生长速率也发生相应的变化.  相似文献   
567.
Flexibly and precisely controlling bubbles is of paramount significance for biological and chemical analysis, reaction engineering, etc. However, the buoyancy force acting on bubbles is significant, making it difficult to precisely manipulate bubbles. Particularly, controlling the anti-buoyancy motion of bubbles remains a fundamental challenge. Herein, a versatile light strategy for manipulating the anti-buoyancy motion of bubbles via a photosensitive substrate is developed. Upon focused laser beam irradiation, an intense Marangoni effect associated with non-uniform temperature distribution is induced underneath the bubble. The created excess Laplace pressure drives the bubble to move against the buoyancy force downward to the focused-laser-acted region, manifesting an excellent phototaxis motion. Theoretical analysis demonstrates that the Marangoni effect is responsible for actuating the anti-buoyancy motion of a bubble. With this light strategy, the bubble collection, transportation, and on-demand release can be flexibly implemented. Moreover, the phototaxis motion of bubbles inspires a manipulation protocol via the integration of 3D-structured design of photosensitive substrate. This light strategy for manipulating bubbles not only possesses sufficiently high accuracy and quick response, but also circumvents the limitation of the liquid volatility and multi-dimensional motion, which provides new ideas for rational control of bubble behaviors.  相似文献   
568.
569.
Solid-state nanopores are implemented in new and promising platforms that are capable of sensing fundamental biomolecular constituents at the single-molecule level. However, several limitations and drawbacks remain. For example, the current strategies based on both electrical and optical sensing suffer from low analyte capture rates and challenging nanofabrication procedures. In addition, their limited discrimination power hinders their application in the detection of complex molecular constructs. In contrast, Raman spectroscopy has recently demonstrated the ability to discriminate both nucleotides and amino acids. Herein, a plasmonic nanoassembly is proposed supporting nanopores at high density, in the order of 100 pores per µm2. These findings demonstrate that the device has a high capture rate in the range of a few fm . The pore size is ≈10 nm in diameter and provides an amplification of the electromagnetic field exceeding 103 in intensity at 785 nm. Owing to these features, single-molecule detection is achieved by means of surface-enhanced Raman scattering from a solution containing 50 fm DNA molecules (≈4.4 kilobase pairs). Notably, the reported spectra show an average number of 2.5 Raman counts per nucleotide. From this perspective, this number is not far from what is necessary to discriminate the DNA sequence.  相似文献   
570.
The exploitation of natural materials has received growing attention because of the needs of environmental sustainability. In contrast to petroleum-based synthetic materials, natural materials possess significant advantages of abundant, low-cost, degradable, and renewable. Here, the recent research status of natural materials as flexible substrate, cathode interfacial material, and anode interfacial material for organic photovoltaics (OPVs) are first presented. Then, the confronted key challenges that limit the widespread application of natural materials for OPVs is summarized, including complex multilength scaled aggregation morphology, non-conjugated structure, and unclear working mechanism. Finally, their potential solutions from the perspective of chemical structure are proposed for constructing efficient OPVs. It is believed that natural materials have a broad landscape in low-cost and green manufacturing technology for OPVs in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号