首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5879篇
  免费   706篇
  国内免费   491篇
化学   2325篇
晶体学   66篇
力学   1191篇
综合类   43篇
数学   276篇
物理学   2245篇
无线电   930篇
  2024年   10篇
  2023年   62篇
  2022年   104篇
  2021年   147篇
  2020年   212篇
  2019年   145篇
  2018年   150篇
  2017年   195篇
  2016年   251篇
  2015年   219篇
  2014年   331篇
  2013年   354篇
  2012年   302篇
  2011年   408篇
  2010年   323篇
  2009年   392篇
  2008年   372篇
  2007年   428篇
  2006年   369篇
  2005年   307篇
  2004年   323篇
  2003年   285篇
  2002年   230篇
  2001年   191篇
  2000年   170篇
  1999年   174篇
  1998年   106篇
  1997年   93篇
  1996年   80篇
  1995年   58篇
  1994年   44篇
  1993年   30篇
  1992年   21篇
  1991年   37篇
  1990年   21篇
  1989年   11篇
  1988年   17篇
  1987年   14篇
  1986年   10篇
  1985年   7篇
  1984年   10篇
  1983年   5篇
  1982年   12篇
  1981年   4篇
  1980年   9篇
  1979年   12篇
  1977年   3篇
  1973年   5篇
  1971年   3篇
  1957年   4篇
排序方式: 共有7076条查询结果,搜索用时 15 毫秒
141.
A better understanding of the solution chemistry of the lanthanide (Ln) salts in water would have wide ranging implications in materials processing, waste management, element tracing, medicine and many more fields. This is particularly true for minerals processing, given governmental concerns about lanthanide security of supply and the drive to identify environmentally sustainable processing routes. Despite much effort, even in simple systems, the mechanisms and thermodynamics of LnIII association with small anions remain unclear. In the present study, molecular dynamics (MD), using a newly developed force field, provide new insights into LnCl3(aq) solutions. The force field accurately reproduces the structure and dynamics of Nd3+, Gd3+ and Er3+ in water when compared to calculations using density functional theory (DFT). Adaptive-bias MD simulations show that the mechanisms for ion pairing change from dissociative to associative exchange depending upon cation size. Thermodynamics of association reveal that whereas ion pairing is favourable, the equilibrium distribution of species at low concentration is dominated by weakly bound solvent-shared and solvent-separated ion pairs, rather than contact ion pairs, reconciling a number of contrasting observations of LnIII–Cl association in the literature. In addition, we show that the thermodynamic stabilities of a range of inner sphere and outer sphere coordination complexes are comparable and that the kinetics of anion binding to cations may control solution speciation distributions beyond ion pairs. The techniques adopted in this work provide a framework with which to investigate more complex solution chemistries of cations in water.  相似文献   
142.
Molecular dynamics (MD) simulations are extensively used in the study of the structures and functions of proteins. Ab initio protein structure prediction is one of the most important subjects in computational biology, and many trials have been performed using MD simulation so far. Since the results of MD simulations largely depend on the force field, reliable force field parameters are indispensable for the success of MD simulation. In this work, we have modified atom charges in a standard force field on the basis of water-phase quantum chemical calculations. The modified force field turned out appropriate for ab initio protein structure prediction by the MD simulation with the generalized Born method. Detailed analysis was performed in terms of the conformational stability of amino acid residues, the stability of secondary structure of proteins, and the accuracy for prediction of protein tertiary structure, comparing the modified force field with a standard one. The energy balance between alpha-helix and beta-sheet structures was significantly improved by the modification of charge parameters.  相似文献   
143.
It has been suggested that the computational cost of correlated ab initio calculations could be reduced efficiently by using truncated basis sets on hydrogen atoms (Mintz et al., J Chem Phys 2004, 121, 5629). We now explore this proposal in the context of conformational analysis of small molecules, such as hydrogen peroxide, dimethyl ether, ethyl methyl ether, formic acid, methyl formate, and several small alcohols. It is found that truncated correlation consistent basis sets that lack certain higher angular momentum functions on hydrogen atoms offer accuracy similar to traditional Dunning's basis sets for conformational analysis. Combination of such basis sets with the basis set extrapolation technique to estimate Hartree-Fock and M?ller-Plesset second order energies provides composite extrapolation model chemistries that are significantly more accurate and faster than analogous single point calculations with traditional correlation consistent basis sets. Root mean square errors of best composite extrapolation model chemistries on the used set of molecules are within 0.03 kcal/mol of traditional focal point conformational energies. The applicability of composite extrapolation methods is illustrated by performing conformational analysis of tert-butanol and cyclohexanol. For comparison, conformational energies calculated with popular molecular mechanics force fields are also given.  相似文献   
144.
Molecular mechanics softwares adopt various set of force field functions. In some cases, reliable data from one set of force field parameters cannot be used in a software that adopts another set of force field. Using mathematical approach, exact relationships between parameters from three bond-bending force fields, namely the (i) harmonic cosine angle, (ii) polynomial series, and (iii) Fourier series, are herein developed. Parameters from these three potential functions are further related to the approximate form, the harmonic angle function, which is valid for small change in chemical bond angle.  相似文献   
145.
The outstanding adhesive performance of mussel byssal threads has inspired materials scientists over the past few decades. Exploiting the amino‐catechol synergy, polymeric pressure‐sensitive adhesives (PSAs) have now been synthesized by copolymerizing traditional PSA monomers, butyl acrylate and acrylic acid, with mussel‐inspired lysine‐ and aromatic‐rich monomers. The consequences of decoupling amino and catechol moieties from each other were compared (that is, incorporated as separate monomers) against a monomer architecture in which the catechol and amine were coupled together in a fixed orientation in the monomer side chain. Adhesion assays were used to probe performance at the molecular, microscopic, and macroscopic levels by a combination of AFM‐assisted force spectroscopy, peel and static shear adhesion. Coupling of catechols and amines in the same monomer side chain produced optimal cooperative effects in improving the macroscopic adhesion performance.  相似文献   
146.
The electrochemical stability of TiO2 nanoarchitecture fabricated in fluoride electrolyte presented in this paper is related to 2D and 3D geometries that present a shift from nanopores toward nanotubes. The fabrication conditions involve a 60 V applied voltage for 2 hours of anodizing in order to create the ordered structures, in a mixture of low‐water glycerol electrolyte and fluoride. With the use of different ultrasonication times, a variety of nanotubes/nanopores were observed. The surface interfacial aspects were investigated mainly by surface microscopy and hydrophilic/hydrophobic balance for the grown structures ultrasonicated at various periods of time. The electrochemical behavior of the nanotube‐structured surface was performed by potentiodynamic evaluation and electrochemical impedance spectroscopy in a simulated body fluid solution. As a most important result, all surface analysis and electrochemical data interpretation permitted the proposition of a model for elaboration of different nanostructures from nanopores to nanotubes. These different surface nanoarchitectures were obtained as a result of ultrasonication at various periods of time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
147.
This paper reports the investigation of the nanostructured surface morphology of novel arborescent polyisobutylene-block-polystyrene (PIB-PS) copolymers, in comparison with linear PS-PIB-PS triblock copolymers, using atomic force microscopy (AFM) in tapping mode. Arborescent PIB-PS samples displayed interesting new phase morphologies, which changed dramatically upon annealing but remained irregular. Linear PS-PIB-PS samples showed morphologies similar to those previously found by transmission electron microscopy (TEM) in cryomicrotomed bulk samples, ranging from spherical/cylindrical to lamellar nanometer-sized discreet PS phases dispersed in a continuous PIB matrix. Annealing the samples resulted in more ordered structures.Three-dimensional AFM image and section analysis indicated a height difference between PIB and PS in the block copolymers, which became more prominent during annealing. This feature was verified on compression moulded and protein coated samples. The arborescent PIB-PS materials displayed thermoplastic elastomeric behaviour with a tensile strength between 7 and 10 MPa and elongation ranging from 1000% to 1830%. In comparison, linear triblock samples had a tensile strength between 7 and 20 MPa and elongation ranging from 380% to 640%. Block copolymers with irregular elastomeric midsegments may emerge as a new class of TPEs.  相似文献   
148.
Thermal motion of CH4+ is investigated by performing an ab initio molecular dynamics method with the second-order M?ller-Plesset (MP2)/6-311G** force field. In the trajectories obtained at 400 K, we have observed rapid interconversion behavior of the geometrical parameters of CH4+ with the frequency of 0.6/ps, where the C-H pair forming the small angle around 55 degrees is switched to another pair on subpicosecond time scale. The switching patterns are found to be classified into the following two types. Type 1: one C-H of the small angled C-H pair is switched to one C-H of the other C-H pair. Type 2: the small angled C-H pair is switched to the other C-H pair, which has been newly observed in the present ab initio MD calculation. The four C-H bonds of CH4+ are characterized by the long and short C-H bonds in a time region of the trajectories, and also for the time-evolution of C-H bonds such interconversion behavior is observed. The switching patterns of the geometrical parameters are compared with those in the interconversion scheme between six equivalent C2v symmetry structures of CH4+ [Paddon-Row, M. N. et al., J Am Chem Soc 1985, 107, 7696]. We have also investigated the electronic energy fluctuation due to thermal motion of CH4+. The standard deviation of total electronic energy at 400 K is evaluated to be 1.2 kcal/mol.  相似文献   
149.
Generalized Born Surface Area (GBSA) models for water using the Pairwise Descreening Approximation (PDA) have been parameterized by two different methods. The first method, similar to that used in previously reported parameterizations, optimizes all parameters against the experimental free energies of hydration of organic molecules. The second method optimizes the PDA parameters to compensate only for systematic errors of the PDA. The best models are compared to Poisson-Boltzmann calculations and applied to the computation of potentials of mean force (PMFs) for the association of various molecules. PMFs present a more rigorous test of the ability of a solvation model to correctly reproduce the screening of intermolecular interactions by the solvent, than its accuracy at predicting free energies of hydration of small molecules. Models derived with the first method are sometimes shown to fail to compute accurate potentials of mean force because of large errors in the computation of Born radii, while no such difficulties are observed with the second method. Furthermore, accurate computation of the Born radii appears to be more important than good agreement with experimental free energies of solvation. We discuss the source of errors in the potentials of mean force and suggest means to reduce them. Our findings suggest that Generalized Born models that use the Pairwise Descreening Approximation and that are derived solely by unconstrained optimization of parameters against free energies of hydration should be applied to the modeling of intermolecular interactions with caution.  相似文献   
150.
Three novel perylene polyimides (PPIs) containing p‐n diblock units were designed and synthesized for use in dye‐sensitized mesoporous TiO2 solar cells. They all dissolve in m‐cresol and N‐methyl‐2‐pyrrolidone (NMP). Their visible light absorption, electrochemical and photoelectrochemical properties were systematically studied. The polyimides have band gap energies of 2.16, 2.19 and 2.25 eV deduced from ultraviolet–visible absorption spectra, and electron affinity (Ea) and ionization potential (IP) of ?3.93 and 6.10 eV for PPI1, ?3.94 and 6.13 eV for PPI2, ?3.93 and 6.59 eV for PPI3, respectively, deduced from cyclic voltammogram. Experimental data show that introduction of 4,4′‐bisaminetriphenylamine cannot only greatly enhance optic‐electro conversion efficiency, but also enhance the dissolubility which in favorable for making the devices. The relationship of structure and properties of PPI is discussed and the mechanism of photocurrent generation is explained. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号