首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16940篇
  免费   2342篇
  国内免费   787篇
化学   2095篇
晶体学   87篇
力学   589篇
综合类   64篇
数学   168篇
物理学   7891篇
无线电   9175篇
  2024年   33篇
  2023年   84篇
  2022年   231篇
  2021年   282篇
  2020年   362篇
  2019年   217篇
  2018年   264篇
  2017年   448篇
  2016年   512篇
  2015年   587篇
  2014年   1075篇
  2013年   967篇
  2012年   1058篇
  2011年   1117篇
  2010年   827篇
  2009年   991篇
  2008年   1203篇
  2007年   1144篇
  2006年   1116篇
  2005年   1099篇
  2004年   1016篇
  2003年   894篇
  2002年   769篇
  2001年   690篇
  2000年   558篇
  1999年   475篇
  1998年   384篇
  1997年   354篇
  1996年   276篇
  1995年   234篇
  1994年   198篇
  1993年   149篇
  1992年   128篇
  1991年   122篇
  1990年   93篇
  1989年   38篇
  1988年   22篇
  1987年   18篇
  1986年   8篇
  1985年   2篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   6篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1957年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
201.
In the present paper, the dynamic mechanical properties of random-in-plane short fiber-reinforced epoxy resin composites were studied by using a rheometrics solids analyzer. The three-point bend testing of the four composites (glass fiber/913 epoxy resin, glass fiber/924 epoxy resin, carbon fiber/913 epoxy resin and carbon fiber/924 epoxy resin) was carried out over temperatures from −100°C to 200°C at a frequency of 10 Hz and strain 0.05%. The composites based on 924 epoxy resin, which has been designed specially for high temperature applications, have less energy loss than the 913 epoxy resinbased composites. For the same resin, the carbon fiber-reinforced composites have less energy loss than the glass fiber-reinforced composites. All the composites have less energy loss than their corresponding matrices; the greater the fiber content, the lower the energy loss. The beta transition of 913 epoxy resin has been shifted to a higher temperature after being reinforced. It was shifted from −50°C to −30°C after being reinforced with glass fiber and made a diffuse shoulder-like peak commencing at −30°C after being reinforced with carbon fiber. The 924 epoxy resin has undergone the same change in beta transition as the 913 resin, though to a smaller extent. The phenomenon suggested that interactions between the macromolecules of the epoxy resins and the molecules along the fiber's surface.  相似文献   
202.
聚乙烯醇双胺肟螯合纤维的合成及其吸附性能   总被引:5,自引:0,他引:5  
利用预辐接技法合成了聚乙烯醇双胺肟螯合纤维。研究了影响接枝率和胺肟基团含量的因素,讨论了吸附酸度、吸附时间对Cu(Ⅱ)离子吸附容量的影响。  相似文献   
203.
A silicon nitride fiber (Si3N4) was synthesized from polycarbosilane (PCS) fiber by radiation application. PCS fibers were cured by electron beam (EB) irradiation in a helium gas atmosphere prior to the pyrolysis. The cured PCS fiber was converted to Si3N4 ceramic fiber with flexibility by nitridation in ammonia gas at a high temperature of 500–1000°C. The obtained Si3N4 fibre showed a high heat resistance up to 1300°C, a high tensile strength of 2 GPa and excellent electrical resistivity of 1013 Ω cm. The ceramic fiber was fabricated to cloth and applied for electric wire insulator. The wire cable is flexible and can be applied at a high temperature atmosphere of around 1000°C.  相似文献   
204.
Nowadays, the awareness of the public along with strict legitimate forces over the use of polymers, the manufacturing and automotive industries started using the renewable materials. Since, natural fiber reinforced composites play vital role in developing lightweight structural materials, this study focuses on utilizing sisal fiber as reinforcement in polyester matrix along with natural filler. The influence of fiber length and fiber volume fraction on the mechanical properties of sisal fiber was studied initially. Test results revealed that the composite with 20?mm fiber length and 20-volume fraction composite has better mechanical properties. Furthermore, the effect of fiber surface modification has been analyzed using various chemical solutions such as NaOH, KMnO4, stearic acid, and maleic acid. Of these, NaOH treatment enhances the mechanical properties of composite compared to all other cases. Finally, the influence of Acacia nilotica, a natural filler addition into the alkali-treated sisal fiber composite has been evaluated by mechanical and dynamic mechanical properties. It is found that the addition of natural filler and surface treatment has enhanced the properties of composites due to their synergetic effect. This effect improves the adhesion and uniform stress transfer among the reinforcements. The fiber surface morphology was evaluated using micrographs obtained from scanning electron microscope.  相似文献   
205.
A scalable flow reactor is demonstrated for enantioselective and regioselective rhodium carbene reactions (cyclopropanation and C?H functionalization) by developing cascade reaction methods employing a microfluidic flow reactor system containing immobilized dirhodium catalysts in conjunction with the flow synthesis of diazo compounds. This allows the utilization of the energetic diazo compounds in a safe manner and the recycling of the dirhodium catalysts multiple times. This approach is amenable to application in a bulk‐scale synthesis employing asymmetric C?H functionalization by stacking multiple fibers in one reactor module. The products from this sequential flow–flow reactor are compared with a conventional batch reactor or flow–batch reactor in terms of yield, regioselectivity, and enantioselectivity.  相似文献   
206.
Potassium permanganate was applied to improve the surface properties of the ultra‐high molecular weight polyethylene (UHMWPE) fibers. The results suggested that the surface oxygen atoms increased dramatically and the O/C ratio increased from 0.030 to 0.563 after treatment. The increased surface roughness and the O‐containing groups on the treated fiber surface decreased the contact angles with water and ethylene glycol. The crystallinity and the crystallite size of the treated fibers increased, and the DSC results indicated that chain scission and the formation of ―C═O chemical defects in the amorphous region were the main mechanisms of the deterioration of the treated UHMEPE fibers. The breaking strength and the elongation at break of the fibers decreased, but the modulus increased after treatment. The treated fibers exhibited better adhesion with epoxy matrix. An improvement of 27.6% from 101.4 to 129.4 MPa in ILSS confirmed the improvement in the interfacial adhesion strength of composites. The impact and bending strength of composites were both improved.  相似文献   
207.
The aim of this investigation was to study the effect of surface thermal oxidation of bamboo/poly(methyl methacrylate) composite by irradiation. Thermal oxidative effects on the surface energy of bamboo fiber were measured by radiation as a function of exposure time and temperature. Oxidized bamboo/poly(methyl methacrylate), after exposure to air at temperatures of 100°C and 110°C, had a range of maximum surface energies from 38 to 41 mJ/m2. Comparisons between Fourier transform infrared carbonyl peak growth and the surface energy showed that both methods detect oxidation, though the increase in surface energy was detected before the carbonyl peak growth was noticeable. The work of adhesion predicted by the surface free energies obtained in this work between a coated calcium carbonate and bamboo fiber changes by 10% due to the oxidation of the polymer at 110°C. The structural results were discussed in the oxidation chemistry of the macromolecule.  相似文献   
208.
This paper is concerned with the effects of the air plasma surface treatment of bamboo fiber on the tribological properties of the bamboo fiber reinforced polyimide (bamboo/polyimide) composites filled with graphite. Plasma treatment and graphite bring positive effect on the improvement of friction reducing and antiwear of bamboo/polyimide composites. And Fourier transform infrared spectroscopy analysis shows that the bamboo fibers have been oxidized and etched by the air plasma treatment. The presence of active groups makes the polarity of the fiber increase, and so the bond property between the fiber and matrix is improved.  相似文献   
209.
A sensitive method for determining sulfonamides in water was developed and validated through in situ derivatization and hollow‐fiber liquid‐phase microextraction with ultra‐high performance liquid chromatography and fluorescence detection. The target sulfonamides were sulfadiazine, sulfacetamide, sulfamerazine, sulfamethazine, sulfamethoxypyridazine, sulfachloropyridazine, sulfamethoxazole, and sulfisoxazole. Following in situ derivatization with fluorescamine, three‐phase hollow‐fiber liquid‐phase microextraction with an S 6/2 polypropylene hollow‐fiber membrane was applied automatically using a multipurpose autosampler. Experimental parameters including derivatization time, choice of organic phase, pH of donor and acceptor phase, stirring rate, extraction temperature and time were optimized. Under optimized conditions, the target sulfonamides achieved excellent linearity with correlation coefficients of 0.9924–0.9994 within the concentration range of 0.05–5 μg/L. The limits of detection of the eight sulfonamides were 3.1–11.2 ng/L, and the limits of quantification were 10.3–37.3 ng/L. Enrichment factors of 0.1 and 5 μg/L sulfonamides spiked in lake water were 14–60, and recoveries were 56–113% with relative standard derivations of 3–19%. Applied with the developed method, sulfamerazine and sulfamethoxazole were measurable in both influent and effluent water of the three sewage treatment plants in Guangzhou, China. The developed method was sensitive and provided an alternative method for simultaneously enriching and quantifying multiple sulfonamides in environmental water.  相似文献   
210.
In this study, a novel ‘fiber‐in‐tube’ configuration was applied to electrochemically controlled fiber‐in‐tube solid‐phase microextraction of antipsychotic drugs (perphenazine and chlorpromazine) from biological samples. To prepare an electrochemically controlled fiber‐in‐tube solid‐phase microextraction column, first eight stainless‐steel wires were placed into the stainless‐steel column. Then, a nanostructured Cu‐Cr‐Al ternary layered double hydroxide/polythiophene coating was prepared on the inner surface of the stainless‐steel tube and on the surfaces of the stainless‐steel wires by a facile in situ electrodeposition method. The nanostructured coating exhibited enhanced long lifetime, good mechanical stability, high porosity, and large specific surface area compared with polythiophene and Cu‐Cr‐Al layered double hydroxide coatings. Under the optimal conditions, the limits of detection were in the range of 0.07–0.8 μg/L. This method showed good linearity for perphenazine and chlorpromazine in the ranges of 0.3–300 and 0.2–300 μg/L, respectively, with coefficients of determination more than 0.9982. The inter‐ and intra‐assay precisions (RSD%, n = 3) were in the ranges of 3.0–5.1 and 2.5–4.5% at three concentration levels of 5, 25 and 50 μg/L, respectively. Finally, the method was applied for the analysis of the drugs in human urine and plasma samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号