首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1097篇
  免费   510篇
  国内免费   97篇
化学   328篇
晶体学   4篇
力学   4篇
综合类   2篇
数学   12篇
物理学   871篇
无线电   483篇
  2024年   3篇
  2023年   16篇
  2022年   23篇
  2021年   54篇
  2020年   74篇
  2019年   56篇
  2018年   34篇
  2017年   57篇
  2016年   57篇
  2015年   63篇
  2014年   63篇
  2013年   87篇
  2012年   101篇
  2011年   81篇
  2010年   62篇
  2009年   75篇
  2008年   98篇
  2007年   86篇
  2006年   98篇
  2005年   96篇
  2004年   75篇
  2003年   52篇
  2002年   43篇
  2001年   40篇
  2000年   45篇
  1999年   21篇
  1998年   20篇
  1997年   28篇
  1996年   26篇
  1995年   14篇
  1994年   16篇
  1993年   7篇
  1992年   8篇
  1991年   11篇
  1990年   2篇
  1989年   5篇
  1988年   5篇
  1981年   1篇
  1980年   1篇
排序方式: 共有1704条查询结果,搜索用时 975 毫秒
41.
Organic materials with multiple emissions tunable by external stimuli represent a great challenge. TTPyr, crystallizing in different polymorphs, shows a very rich photophyisics comprising excitation-dependent fluorescence and phosphorescence at ambient conditions, and mechanochromic and thermochromic behavior. Transformation among the different species has been followed by thermal and X-ray diffraction analyses and the emissive features interpreted through structural results and DFT/TDDFT calculations. Particularly intriguing is the polymorph TTPyr(HT), serendipitously obtained at high temperature but stable also at room temperature, whose non-centrosymmetric structure guarantees an SHG efficiency 10 times higher than that of standard urea. Its crystal packing, where only the TT units are strongly rigidified by π-π stacking interactions while the Pyr moieties possess partial conformational freedom, is responsible for the observed dual fluorescence. The potentialities of TTPyr for bioimaging have been successfully established.  相似文献   
42.
A terthiazole‐based molecular switch associating 6π electrocyclization, excited state intramolecular proton transfer (ESIPT), and strong metal binding capability was prepared. The photochemical and photophysical properties of this molecule and of the corresponding nickel and copper complexes were thoroughly investigated by steady‐state and ultrafast absorption spectroscopy and rationalized by DFT/TDDFT calculations. The switch behaves as a biphotochrome with time‐dependent photochemical outcome and displays efficient ESIPT‐based fluorescence photoswitching. Both photochemical reactions are suppressed by nickel or copper metalation, and the main factors contributing to the quenching of the electrocyclization are discussed.  相似文献   
43.
44.
We prepared conceptually novel, fully rigid, spiro compact electron donor (Rhodamine B, lactam form, RB)/acceptor (naphthalimide; NI) orthogonal dyad to attain the long-lived triplet charge-transfer (3CT) state, based on the electron spin control using spin-orbit charge transfer intersystem crossing (SOCT-ISC). Transient absorption (TA) spectra indicate the first charge separation (CS) takes place within 2.5 ps, subsequent SOCT-ISC takes 8 ns to produce the 3NI* state. Then the slow secondary CS (125 ns) gives the long-lived 3CT state (0.94 μs in deaerated n-hexane) with high energy level (ca. 2.12 eV). The cascade photophysical processes of the dyad upon photoexcitation are summarized as 1NI*→1CT→3NI*→3CT. With time-resolved electron paramagnetic resonance (TREPR) spectra, an EEEAAA electron-spin polarization pattern was observed for the naphthalimide-localized triplet state. Our spiro compact dyad structure and the electron spin-control approach is different to previous methods for which invoking transition-metal coordination or chromophores with intrinsic ISC ability is mandatory.  相似文献   
45.
Hydrogen bonds (H bonds) play a major role in defining the structure and properties of many substances, as well as phenomena and processes. Traditional H bonds are ubiquitous in nature, yet the demonstration of weak H bonds that occur between a highly polarized C−H group and an electron-rich oxygen atom, has proven elusive. Detailed here are linear and nonlinear IR spectroscopy experiments that reveal the presence of H bonds between the chloroform C−H group and an amide carbonyl oxygen atom in solution at room temperature. Evidence is provided for an amide solvation shell featuring two clearly distinguishable chloroform arrangements that undergo chemical exchange with a time scale of about 2 ps. Furthermore, the enthalpy of breaking the hydrogen bond is found to be 6–20 kJ mol−1. Ab-initio computations support the findings of two distinct solvation shells formed by three chloroform molecules, where one thermally undergoes hydrogen-bond making and breaking.  相似文献   
46.
Femtosecond time-resolved absorption and picosecond time-resolved emission measurements were carried out for highly concentrated aqueous solutions of K2[Pt(CN)4] to investigate excited-state dynamics of the [Pt(CN)42−] oligomers formed with metallophilic interactions. Time-resolved absorption spectra exhibit complicated dynamics that are represented with five time constants. Among them, the 90-ps and 400-ps dynamics were assigned to the S1 → T1 intersystem crossing of the trimer and tetramer coexisting in the solution by comparison with the fluorescence decays. Clear oscillations of transient absorption were observed in the first few picoseconds, and the frequency-detected-wavelength 2D analysis revealed that the 135-cm−1 and 65-cm−1 oscillations arise from the Pt–Pt stretch motions of the S1 trimer and S1 tetramer, respectively. The obtained time-resolved spectroscopic data provide a clear view of the excited-state dynamics of the [Pt(CN)42−] oligomers in the femto-/picosecond time region.  相似文献   
47.
A multiply charged molecule expands the range of a mass window and is utilized as a precursor to provide rich sequence coverage; however, reflectron time-of-flight mass spectrometer has not been well applied to the product ion analysis of multiply charged precursor ions. Here, we demonstrate that the range of the mass-to-charge ratio of measurable product ions is limited in the cases of multiply charged precursor ions. We choose C6F6 as a model molecule to investigate the reactions of multiply charged molecular cations formed in intense femtosecond laser fields. Measurements of the time-of-flight spectrum of C6F6 by changing the potential applied to the reflectron, combined with simulation of the ion trajectory, can identify the species detected behind the reflectron as the neutral species and/or ions formed by the collisional charge transfer. Moreover, the metastable ion dissociations of doubly and triply charged C6F6 are identified. The detection of product ions in this manner can diminish interference by the precursor ion. Moreover, it does not need precursor ion separation before product ion analysis. These advantages would expand the capability of mass spectrometry to obtain information about metastable ion dissociation of multiply charged species.  相似文献   
48.
The geometrical evolution of the reactant and formation of the photoproduct in the cycloreversion reaction of a diarylethene derivative were probed using time-resolved absorption spectroscopies in the visible to near-infrared and mid-infrared regions. The time-domain vibrational data in the visible region show that the initially formed Franck-Condon state is geometrically relaxed into the minimum in the excited state potential energy surface, concomitantly with the low-frequency coherent vibrations. Theoretical calculations indicate that the nuclear displacement in this coherent vibration is nearly parallel to that in the geometrical relaxation. Time-resolved mid-infrared spectroscopy directly detected the formation of the open-ring isomer with the same time constant as the decrease of the closed-ring isomer in the excited state minimum. This observation reveals that no detectable intermediate, in which the population is accumulated, is present between the excited closed-ring isomer and the open-ring isomer in the ground state.  相似文献   
49.
Gastrin‐releasing peptide receptor (GRPr) plays proliferative and inflammatory roles in living systems. Here, we report a highly selective GRPr antagonist (JMV594)‐tethered iridium(III) complex for probing GRPr in living cancer cells and immune cells. This probe exhibited desirable photophysical properties and also displayed negligible cytotoxicity, overcoming the inherent toxicity of the iridium(III) complex. Its long emission lifetime enabled its luminescence signal to be readily distinguished from the interfering fluorescence of organic dyes by using a time‐resolved technique. This probe selectively visualized living cancer cells via specific binding to GRPr, while it also modulated the function of GRPr on TNF‐α secretion in immune cells. To our knowledge, this is the first peptide‐conjugated iridium(III) complex developed as a GRPr bioimaging probe and modulator of GRPr activity. This theranostic agent shows great potential at unmasking the diverse roles of GRPr in living systems.  相似文献   
50.
One-electron oxidation of 2-selenouracil (2-SeU) by hydroxyl (OH) and azide (N3) radicals leads to various primary reactive intermediates. Their optical absorption spectra and kinetic characteristics were studied by pulse radiolysis with UV-vis spectrophotometric and conductivity detection and by the density functional theory (DFT) method. The transient absorption spectra recorded in the reactions of OH with 2-SeU are dominated by an absorption band with an λmax = 440 nm, the intensity of which depends on the concentration of 2-SeU and pH. Based on the combination of conductometric and DFT studies, the transient absorption band observed both at low and high concentrations of 2-SeU was assigned to the dimeric 2c-3e Se-Se-bonded radical in neutral form (2). The dimeric radical (2) is formed in the reaction of a selenyl-type radical (6) with 2-SeU, and both radicals are in equilibrium with Keq = 1.3 × 104 M−1 at pH 4 (below the pKa of 2-SeU). Similar equilibrium with Keq = 4.4 × 103 M−1 was determined for pH 10 (above the pKa of 2-SeU), which admittedly involves the same radical (6) but with a dimeric 2c-3e Se-Se bonded radical in anionic form (2●−). In turn, at the lowest concentration of 2-SeU (0.05 mM) and pH 10, the transient absorption spectrum is dominated by an absorption band with an λmax = 390 nm, which was assigned to the OH adduct to the double bond at C5 carbon atom (3) based on DFT calculations. Similar spectral and kinetic features were also observed during the N3-induced oxidation of 2-SeU. In principle, our results mostly revealed similarities in one-electron oxidation pathways of 2-SeU and 2-thiouracil (2-TU). The major difference concerns the stability of dimeric radicals with a 2c-3e chalcogen-chalcogen bond in favor of 2-SeU.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号