首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5087篇
  免费   733篇
  国内免费   222篇
化学   2350篇
晶体学   28篇
力学   383篇
综合类   62篇
数学   347篇
物理学   754篇
无线电   2118篇
  2024年   62篇
  2023年   207篇
  2022年   200篇
  2021年   342篇
  2020年   399篇
  2019年   238篇
  2018年   197篇
  2017年   233篇
  2016年   290篇
  2015年   250篇
  2014年   298篇
  2013年   307篇
  2012年   282篇
  2011年   281篇
  2010年   214篇
  2009年   239篇
  2008年   213篇
  2007年   261篇
  2006年   224篇
  2005年   219篇
  2004年   188篇
  2003年   166篇
  2002年   99篇
  2001年   91篇
  2000年   79篇
  1999年   58篇
  1998年   55篇
  1997年   48篇
  1996年   48篇
  1995年   30篇
  1994年   18篇
  1993年   25篇
  1992年   16篇
  1991年   4篇
  1990年   10篇
  1989年   5篇
  1988年   14篇
  1986年   31篇
  1985年   6篇
  1984年   16篇
  1983年   4篇
  1982年   7篇
  1981年   6篇
  1979年   12篇
  1978年   9篇
  1977年   8篇
  1976年   5篇
  1973年   3篇
  1972年   7篇
  1971年   4篇
排序方式: 共有6042条查询结果,搜索用时 10 毫秒
981.
PbI2/MoS2,as a typical van der Waals(vdW)heterostructure,has attracted intensive attention owing to its remarkable electronic and optoelectronic properties.In this work,the effect of defects on the electronic structures of a PbI2/MoS2 heterointerface has been systematically investigated.The manner in which the defects modulate the band structure of PbI2/MoS2,including the band gap,band edge,band alignment,and defect energy-level density within the band gap is discussed herein.It is shown that sulfur defects tune the band gaps,iodine defects shift the positions of the band edge and Fermi level,and lead defects realize the conversions between the straddling-gap band alignment and valence-band-aligned gap,thus enhancing the light-absorption ability of the material.  相似文献   
982.
王岩山  王珏  常哲  彭万敬  孙殷宏  马毅  高清松  张凯  唐淳 《强激光与粒子束》2020,32(1):011006-1-011006-3
基于简单的主振荡功率放大结构,演示了一种高功率窄线宽线性偏振全光纤激光器,其最大输出功率为3.08 kW,3 dB线宽为0.2 nm。在整个功率缩放过程中,偏振消光比约为94%,光束质量M 2约为1.4。这是国内外首次实现3 kW全保偏光纤激光输出,与基于相位调制的窄线宽激光器相比,该激光器可实现近似的线宽,同时具有受激布里渊散射阈值高、系统结构简单、成本低等特点。  相似文献   
983.
The studies of electron transport through a junction of topological materials in the literature so far ignore the coupling of a topological material to its surrounding environment. Here, the dynamics of an open system through a stochastic Hamiltonian are simulated to investigate the influence of the environment on the scattering of electrons by a junction of different topological materials, such as a Dirac–Weyl magnetic junction and a topological insulator. It is found that, although the detrimental effect of the environment is inevitable, the Landauer conductance can be enhanced via adjusting the system–environment coupling strength. This result supplies the possibilty of changing the transport feature of topological materials by modulating the surrounded environment. It is also demonstrated that a non-Hermitian Hamiltonian can be used to replace the stochastic Hamiltonian for this study, when the system and the environment coupling are weak.  相似文献   
984.
The quantum thermalization of the Jaynes–Cummings (JC) model in both equilibrium and non-equilibrium open-system cases is studied, in which the two subsystems, a two-level system and a single-mode bosonic field, are in contact with either two individual heat baths or a common heat bath. It is found that in the individual heat-bath case, the JC model can only be thermalized when either the two heat baths have the same temperature or the coupling of the JC system to one of the two baths is turned off. In the common heat-bath case, the JC system can be thermalized irrespective of the bath temperature and the system–bath coupling strengths. The thermal entanglement in this system is also studied. A counterintuitive phenomenon of vanishing thermal entanglement in the JC system is found and proved.  相似文献   
985.
Vascular tissue engineering has made prodigious progress in recent years by converging multidisciplinary approaches. Latest technological advancements foster the development of next-generation tissue-engineered vascular grafts (TEVGs) for treating various vasculopathies. While traditional therapeutic methods rely on bypassing the severely damaged vessels with synthetic counterparts with no growth potential, contemporary perspectives focus on biodegradable conduits bestowing an inherent remodeling capability. This review highlights emerging innovative trends and technologies adopted to pragmatically fulfill current scientific needs while improving overall TEVG performance in pre-clinical and clinical settings. A comprehensive overview of various milestones achieved in the past few decades is first summarized, followed by an appraisal of the significant hurdles for clinical translation. The latest techniques to rationally address critical challenges, viz., intimal hyperplasia, thrombosis, constructive graft remodeling, and adequate neo-tissue formation are discussed. Finally, an update on ongoing clinical trials is provided and future perspectives required to persuade TEVGs to become a clinical reality are delineated.  相似文献   
986.
A bioengineered spinal cord is fabricated via extrusion‐based multimaterial 3D bioprinting, in which clusters of induced pluripotent stem cell (iPSC)‐derived spinal neuronal progenitor cells (sNPCs) and oligodendrocyte progenitor cells (OPCs) are placed in precise positions within 3D printed biocompatible scaffolds during assembly. The location of a cluster of cells, of a single type or multiple types, is controlled using a point‐dispensing printing method with a 200 µm center‐to‐center spacing within 150 µm wide channels. The bioprinted sNPCs differentiate and extend axons throughout microscale scaffold channels, and the activity of these neuronal networks is confirmed by physiological spontaneous calcium flux studies. Successful bioprinting of OPCs in combination with sNPCs demonstrates a multicellular neural tissue engineering approach, where the ability to direct the patterning and combination of transplanted neuronal and glial cells can be beneficial in rebuilding functional axonal connections across areas of central nervous system (CNS) tissue damage. This platform can be used to prepare novel biomimetic, hydrogel‐based scaffolds modeling complex CNS tissue architecture in vitro and harnessed to develop new clinical approaches to treat neurological diseases, including spinal cord injury.  相似文献   
987.
巩燕芳 《电子测试》2021,(3):139-140
本文将围绕计算机网络技术与电子信息工程的概念与联系,针对计算机网络技术在电子信息工程中的具体应用展开全面论述.  相似文献   
988.
Solid-state electrolytes have drawn enormous attention to reviving lithium batteries but have also been barricaded in lower ionic conductivity at room temperature, awkward interfacial contact, and severe polarization. Herein, a sort of hierarchical composite solid electrolyte combined with a “polymer-in-separator” matrix and “garnet-at-interface” layer is prepared via a facile process. The commercial polyvinylidene fluoride-based separator is applied as a host for the polymer-based ionic conductor, which concurrently inhibits over-polarization of polymer matrix and elevates high-voltage compatibility versus cathode. Attached on the side, the compact garnet (Li6.4La3Zr1.4Ta0.6O12) layer is glued to physically inhibit the overgrowth of lithium dendrite and regulate the interfacial electrochemistry. At 25 °C, the electrolyte exhibits a high ionic conductivity of 2.73 × 10−4 S cm−1 and a decent electrochemical window of 4.77 V. Benefiting from this elaborate electrolyte, the symmetrical Li||Li battery achieves steady lithium plating/stripping more than 4800 h at 0.5 mA cm−2 without dendrites and short-circuit. The solid-state batteries deliver preferable capacity output with outstanding cycling stability (95.2% capacity retained after 500 cycles, 79.0% after 1000 cycles at 1 C) at ambient temperature. This hierarchical structure design of electrolyte may reveal great potentials for future development in fields of solid-state metal batteries.  相似文献   
989.
Pioneering research suggests various modes of cellular therapeutics and biomaterial strategies for myocardial tissue engineering. Despite several advantages, such as safety and improved function, the dynamic myocardial microenvironment prevents peripherally or locally administered therapeutic cells from homing and integrating of biomaterial constructs with the infarcted heart. The myocardial microenvironment is highly sensitive due to the nanoscale cues that it exerts to control bioactivities, such as cell migration, proliferation, differentiation, and angiogenesis. Nanoscale control of cardiac function has not been extensively analyzed in the field of myocardial tissue engineering. Inspired by microscopic analysis of the ventricular organization in native tissue, a scalable in‐vitro model of nanoscale poly(L ‐lactic acid)‐co ‐poly(? ‐caprolactone)/collagen biocomposite scaffold is fabricated, with nanofibers in the order of 594 ± 56 nm to mimic the native myocardial environment for freshly isolated cardiomyocytes from rabbit heart, and the specifically underlying extracellular matrix architecture: this is done to address the specificity of the underlying matrix in overcoming challenges faced by cellular therapeutics. Guided by nanoscale mechanical cues provided by the underlying random nanofibrous scaffold, the tissue constructs display anisotropic rearrangement of cells, characteristic of the native cardiac tissue. Surprisingly, cell morphology, growth, and expression of an interactive healthy cardiac cell population are exquisitely sensitive to differences in the composition of nanoscale scaffolds. It is shown that suitable cell–material interactions on the nanoscale can stipulate organization on the tissue level and yield novel insights into cell therapeutic science, while providing materials for tissue regeneration.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号