首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25225篇
  免费   4658篇
  国内免费   3427篇
化学   12029篇
晶体学   211篇
力学   1613篇
综合类   165篇
数学   1649篇
物理学   10900篇
无线电   6743篇
  2024年   139篇
  2023年   465篇
  2022年   687篇
  2021年   895篇
  2020年   1147篇
  2019年   904篇
  2018年   876篇
  2017年   1031篇
  2016年   1230篇
  2015年   1176篇
  2014年   1651篇
  2013年   2030篇
  2012年   1566篇
  2011年   1743篇
  2010年   1436篇
  2009年   1620篇
  2008年   1657篇
  2007年   1640篇
  2006年   1609篇
  2005年   1277篇
  2004年   1166篇
  2003年   1072篇
  2002年   860篇
  2001年   749篇
  2000年   691篇
  1999年   632篇
  1998年   506篇
  1997年   446篇
  1996年   357篇
  1995年   314篇
  1994年   279篇
  1993年   204篇
  1992年   176篇
  1991年   171篇
  1990年   114篇
  1989年   109篇
  1988年   104篇
  1987年   84篇
  1986年   69篇
  1985年   70篇
  1984年   67篇
  1983年   29篇
  1982年   44篇
  1981年   44篇
  1980年   40篇
  1979年   34篇
  1978年   19篇
  1977年   24篇
  1976年   13篇
  1974年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
In this work, the isolation step in the linear ion trap was performed using different “q values” conditions at a low collision-induced dissociation (CID) energy leading to the parent ion resolution improvements, reasonably due to better ion energy distribution. According to the results, we obtained a greater resolution and mass accuracy operating in both traditional electrospray and low voltage ionization near the q value = 0.778 and with a CID energy of 10%. This effect was evaluated with low-molecular-mass compounds (skatole and arginine). The proposed optimization yielded a superior instrument performance without adding technological complexity to mass spectrometry analyses.  相似文献   
992.
Metal-sulfur batteries are a promising next-generation energy storage technology, offering high theoretical energy densities with low cost and good sustainability. An active area of research is the development of electrolytes that address unwanted migration of sulfur and intermediate species known as polysulfides during operation of metal-sulfur batteries, a phenomenon that leads to low energy efficiency and short life-spans. A particular class of electrolytes, gel polymer electrolytes, are especially attractive for their ability to repel polysulfides on the basis of structure, electrostatics, and other polymer properties. Herein, within the context of magnesium- and lithium-sulfur batteries, we investigate the impact of gel polymer electrolyte cation solvation capacity, a property related to network dielectric constant and chemistry, on sulfur/polysulfide-polymer interactions, an understudied property-performance relationship. Polymers with lower cation solvation capacity are found to permanently absorb less polysulfide active material, which increases sulfur utilization for Li−S batteries and significantly increases charge efficiency and life-span for Li−S and Mg−S batteries.  相似文献   
993.
We present a new full-dimensional diabatic potential energy matrix (DPEM) for electronically nonadiabatic collisions of OH(A 2Σ+) with H2, and we calculate the probabilities of electronically adiabatic inelastic collisions, nonreactive quenching, and reactive quenching to form H2O+H. The DPEM was fitted using a many-body expansion with permutationally invariant polynomials in bond-order functions to represent the many-body part. The dynamics calculations were carried out with the fewest-switches with time uncertainty and stochastic decoherence (FSTU/SD) semiclassical trajectory method. We present results both for head-on collisions (impact parameter b equal to zero) and for a full range of impact parameters. The results are compared to experiment and to earlier FSTU/SD and quantum dynamics calculations with a previously published DPEM. The various theoretical results all agree that nonreactive quenching dominates reactive quenching, but there are quantitative differences between the two DPEMs and between the b=0 results and the all-b results, especially for the probability of reactive quenching.  相似文献   
994.
Organic solar cells (OSCs) harvesting indoor light are highly promising for emerging technologies, such as internet of things. Herein, the photovoltaic performance of PTB7-Th:PC71BM solar cells constructed using “optimized (with 1,8-diiodooctane (DIO))” and “non-optimized (without DIO)” processing conditions are compared for indoor and outdoor applications. We find that in comparison to the “optimized” solar cell, the “non-optimized” solar cell is less efficient under simulated solar light illumination (100 mW cm−2, spectral range 350–1100 nm), owing to significant bimolecular charge carrier recombination losses. However, under simulated indoor illumination (3.28 mW cm−2, spectral range 400–700 nm), bimolecular recombination losses are effective suppressed, thus the power conversion efficiency of the solar cell without DIO was increased to 14.7 %, higher than that of the solar cell with DIO (14.2 %). These results suggest that the common strategy used to optimize the OSCs could be undesired for indoor OSCs. We demonstrate that the efforts for realizing the desired “morphology” of the active layer for the outdoor OSCs may be unnecessary for indoor OSCs, allowing us to realize high-efficiency indoor OSCs using a non-halogenated solvent.  相似文献   
995.
Dehydrogenation of an organic compound is the first and the most fundamental elementary reaction in many organic reactions. In ethanol oxidation reaction (EOR) to form CO2, there are a total of 46 pathways in C2HxO (x=1–6) species leading to the removal of all six hydrogen atoms in five C−H bonds and one O−H bond. To investigate the degree of dehydrogenation in EOR under operando conditions, we performed density function theory (DFT) calculations to study 28 dehydrogenation steps of C2HxO on Ir(100). An activation energy surface was then constructed and compared with that of the C−C bond cleavages to understand the importance of the degree of dehydrogenation in EOR. The results show that there are likely 28 dehydrogenations in EOR under fuel cell temperatures and the last two hydrogens in C2H2O are less likely cleaved. On the other hand, deep dehydrogenation including 45 dehydrogenations can occur under ethanol steam reforming conditions.  相似文献   
996.
商业化锂离子电池石墨负极和锂盐过渡金属氧化物正极材料的储锂容量都已接近各自的理论值,探索下一代高能量密度电极材料是解决现阶段锂离子电池容量限制的关键。近年来,新型金属草酸基负极材料,借助其在金属离子电池中多元化储能机制诱发的较高储能效应在碱金属离子电池绿色储能材料领域备受关注。本文就金属草酸基材料在锂、钠、钾金属离子电池方面的最新研究进行了综述,着重介绍了材料的晶型结构、多元化储能机制及储能过程中的动力学特征,简单阐述了材料在电化学储能中存在的问题,分析了金属草酸基负极材料在形貌晶型控制、界面碳复合改性和金属元素掺杂方面的改性策略。最后,预测了金属草酸基负极材料在碱金属离子电池体系的发展方向。  相似文献   
997.
In the present study, we assessed improvement of anti-inflammatory activity and drug delivery of sulfasalazine (SSZ) by the poly(lactic-co-glycolic acid), (PLGA), in H2O and dichloromethane (DCM) environments via density functional theory (DFT), ADMET, and molecular docking. Our calculated results based on binding energy and thermodynamic parameter represents that the interaction between SSZ and PLGA in Complex A via double hydrogen bonds is stronger in comparison with Complex B. The analysis of Ultraviolet–visible (UV–VIS) spectra proved the interaction of SSZ with PLGA by time-dependent density functional theory (TDDFT). Infrared (IR) spectra demonstrated that the structure of PLGA was shifted in the presence of the SSZ. The interaction of SSZ with PLGA leads to an increase in dipole moment and higher solubility with more negative Gibbs free solvation energy (ΔGsolv) values and lowering of the energy gap (Eg). The obtained results by Molecular docking demonstrates that the interaction of SSZ via its carboxylate group with PLGA (complex A) had a strong interaction towards the binding pocket of the target and as a potential inhibitor of the COX-2, TNF-α, and IL-1 receptors at the binding site as compared with the complex B.  相似文献   
998.
Using a vertical hair-slice section, we compared the components of normal and damaged hair regions using two ionization methods, matrix-assisted laser desorption/ionization and nanoparticle-assisted laser desorption/ionization (Nano-PALDI) mass spectrometry. Nano-PALDI is useful for small-molecule and high spatial resolution (5 μm) analyses due to the lack of noise. Thus, clear images were obtained from thin hair samples. In Nano-PALDI mass spectrometry imaging, cystine and 18-methyleicosanoic acid as endogenous hair components localized in the cuticle and cortex and cuticle of normal hair, respectively. In contrast, both components were absent in damaged hair.  相似文献   
999.
Supercapacitors (SCs) with high energy density and power density are a research hotspot. Herein, we report a flexible porous carbon membrane supercapacitor prepared by electrospinning polyacrylonitrile (PAN) with γ-cyclodextrin-MOF (γ-CD-MOF) and then carbonizing at 900 °C. BET results showed that the supercapacitor retained the skeleton of γ-CD, γ-CD-MOF and the pores formed by the spun-fibers, which were 0.73, 1.09 and 23–186 nm, respectively, showing a high specific surface area of 134.7 m2/g. The hierarchically porous structures ensure rapid charge transfer and ion diffusion, resulting in the PAN/γ-CD-MOF carbon electrode with a high capacity of 283.3 F/g. Moreover, the supercapacitor had a high energy density up to 17.5 Wh/kg and power density up to 6 kW/kg. Significantly, it showed excellent cycle stability with a capacitance retention of 97.5% after 6000 cycles. This work provides a supramolecular strategy to construct a flexible porous carbon membrane, which has potential for supercapacitor applications.  相似文献   
1000.
Energy storage using dielectric capacitors is a growing area of research and development. However, designing a highly performing dielectric capacitor is still a challenge. Despite the excellent results achieved in lead-based dielectrics, lead-free substitutes are essential because of the environmental concerns associated with lead-based products. The lead-free 1?x (0.94NaNbO3? 0.06SrZrO3)+ x Bi2O3 ceramics abbreviated NNSZ + xB for x = 0.0, 0.05, 0.1, 0.15, and 0.20 was fabricated via solid-state reaction. A recoverable energy density of 2.93 J cm?3 was obtained for NNSZ+0.1B, associated with high thermal stability (25–130 °C), excellent cycling (N = 105), and high efficiency (η) of 83.5%. Moreover, the introduction of Bi2O3 significantly improved the electrical insulation (?r at 1 kHz = 1608 and tan δ = 0.0038) and breakdown strength (380 kVcm?1) of NNSZ+0.1B by minimizing the formation of sodium, bismuth, and oxygen vacancies. The results obtained in this study provide a benchmark for further investigations on NaNbO3-based ceramics. More importantly, this study suggests that NNSZ + xB ceramics can be used in pulsed power technology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号