首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5153篇
  免费   1022篇
  国内免费   841篇
化学   2066篇
晶体学   323篇
力学   139篇
综合类   11篇
数学   19篇
物理学   2333篇
无线电   2125篇
  2024年   13篇
  2023年   59篇
  2022年   96篇
  2021年   157篇
  2020年   163篇
  2019年   168篇
  2018年   115篇
  2017年   226篇
  2016年   246篇
  2015年   244篇
  2014年   312篇
  2013年   319篇
  2012年   347篇
  2011年   539篇
  2010年   385篇
  2009年   433篇
  2008年   389篇
  2007年   425篇
  2006年   388篇
  2005年   322篇
  2004年   264篇
  2003年   229篇
  2002年   164篇
  2001年   149篇
  2000年   123篇
  1999年   101篇
  1998年   82篇
  1997年   97篇
  1996年   92篇
  1995年   88篇
  1994年   49篇
  1993年   29篇
  1992年   49篇
  1991年   29篇
  1990年   25篇
  1989年   19篇
  1988年   11篇
  1987年   11篇
  1986年   9篇
  1985年   10篇
  1984年   7篇
  1983年   7篇
  1982年   9篇
  1981年   2篇
  1979年   6篇
  1978年   2篇
  1975年   5篇
  1974年   2篇
排序方式: 共有7016条查询结果,搜索用时 15 毫秒
181.
采用喷雾辅助气相沉积法在水热法合成的ZnO纳米线上沉积CdS纳米颗粒。采用X射线衍射仪(XRD)、激光拉曼仪(Raman)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱分析谱(XPS)和紫外可见漫反射光谱等测试手段对复合光催化剂进行表征。结果表明,3~10 nm的CdS纳米粒子修饰在直径约为100 nm ZnO纳米线的表面。XPS和Raman表明复合材料中ZnO和CdS之间存在化学相互作用。可见光催化降解罗丹明B实验结果表明ZnO/CdS复合材料的催化性能优于单相CdS或ZnO,沉积时间为30 s合成的ZnO/CdS速率常数分别是CdS和ZnO的2.91和4.03倍,且具有较高的稳定性。ZnO/CdS复合材料光催化性能增强的可能原因为光吸收范围的拓展和光生载流子分离效率的提高。  相似文献   
182.
Electroless Ni–P and Ni–P–TiCN composite coatings have been deposited successfully on Al substrates. Scanning electron microscopy (SEM) and energy dispersive X‐ray (EDX) techniques were applied to study the surface morphology and the chemical composition of the deposited films. Moreover, X‐ray diffraction (XRD) proved that Ni–P and Ni–P–TiCN deposits have amorphous structures. The properties of Ni–P–TiCN/Al composite films such as hardness, corrosion resistance and electrocatalytic activity were examined and compared with that of Ni–P/Al film. The results of hardness measurements reveal that the presence of TiCN particles with Ni–P matrix improves its hardness. Additionally, the performance against corrosion was examined using Tafel lines and electrochemical impedance spectroscopy techniques in both of 0.6 M NaCl and a mixture of 0.5 M H2SO4 with 2 ppm HF solutions. The results indicate that the incorporation of high dispersed TiCN particles into Ni–P matrix led to a positive shift of the corrosion potential and an increase in the corrosion resistance for all aluminum substrates after their coating with Ni–P–TiCN. In addition, Ni–P–TiCN/Al electrodes showed a higher electrochemical catalytic activity and stability toward methanol oxidation in 0.5 M NaOH solution compared with that of Ni–P/Al. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
183.
Wurtzite ZnO thin films were prepared on sapphire substrate by metal organic chemical vapor deposition (MOCVD). Raman scattering studies on different crystallographic textures were performed in the backscattering geometry, and polarization effect is investigated in different configurations and . ZnO Raman modes are investigated in each texture. In the case of ZnO thin film deposed on r‐() sapphire plane and using backscattering geometry, new Raman line was observed at 390 cm−1 because this mode has not been noticed in this geometry. It is shown that the frequencies of the quasi‐phonon modes of the examined thin film are in good agreement with the theoretical values calculated within the framework of Loudon model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
184.
Graphene has become a research focus in recent years owing to its excellent characteristics, and glass is a commonly used material with high transparency and low cost. Graphene glass combines the excellent properties of both graphene and glass; graphene glass has not only high thermal conductivity, high electrical conductivity, and good surface hydrophobicity but also exhibits superior electrothermal conversion and wide-spectrum high-light-transmittance characteristics. Therefore, the study of graphene glass films is of theoretical value and practical significance. In this study, a high-purity glass-based (JGS1 quartz glass) multilayer graphene film was developed based on an atmospheric-pressure chemical vapor deposition (APCVD) method, and its electrical characteristics, light transmittance, and electrical heating characteristics were experimentally investigated in detail. The results show that graphene glass with different surface resistance values obtained through direct growth on a high-purity quartz glass substrate using the APCVD method, not only has excellent uniformity and quality, but also has considerably flat and high transmittance across the entire visible light region and exhibits excellent heating performance and fast response time. For graphene glass with a surface resistance of 1500 Ω·sq-1, the light transmittance can reach 74%, and the saturation temperature can rise to 185 ℃ by applying a bias voltage of 40 V. In addition, when the resistance value of the graphene glass is 420 Ω·sq-1, the graphene glass reaches a high saturation temperature of 325 ℃ in 40 s, and the corresponding heating rate can exceed 18 ℃·s-1, achieving a significantly higher heating rate than other heating films at the same voltage. Compared with the polyethylene-terephthalate- (PET-) based and silicon-based graphene films obtained by the transfer, graphene glass has a higher saturation temperature, shorter thermal response time, and faster heating rate. Furthermore, graphene glass exhibits better heating cycle stability and longer-term heating stability at a constant voltage. In addition, an experiment using the graphene glass to thermally tune the wavelength of a vertical-cavity surface-emitting laser was conducted and gave good results. The position of the laser peak controlled by the graphene glass was red-shifted by 1.78 nm by applying a voltage of 20 V, and the wavelength tuning efficiency reached 0.059 nm·℃-1. Compared with PET-based and silicon-based graphene films, the actual electrical heating capacity of graphene glass increased by 195%. These experimental findings demonstrate that graphene glass transparent films with excellent electric heating characteristics can be used in various transparent electric heating fields and have relatively wide application prospects.  相似文献   
185.
程熠  王坤  亓月  刘忠范 《物理化学学报》2022,38(2):2006046-0
石墨烯纤维材料是以石墨烯为主要结构基元沿某一特定方向组装而成或由石墨烯包覆纤维状基元形成的宏观一维材料。根据组成基元的不同可将石墨烯纤维材料分为石墨烯纤维和石墨烯包覆复合纤维。石墨烯纤维材料在一维方向上充分发挥了石墨烯高强度、高导电、高导热等特点,在智能纤维与织物、柔性储能器件、便携式电子器件等领域具有广阔的应用前景。随着化学气相沉积(Chemical Vapor Deposition,CVD)制备石墨烯薄膜技术的发展,CVD技术也逐渐应用于石墨烯纤维材料的制备。利用CVD法制备石墨烯纤维可避免传统纺丝工艺中繁琐的氧化石墨烯(Graphene Oxide,GO)还原过程。同时,通过CVD法直接将石墨烯沉积至纤维表面可以保证石墨烯与纤维基底之间强的粘附作用,提高复合纤维的稳定性,同时可实现对石墨烯质量的有效调控。本文综述了石墨烯纤维材料的CVD制备方法,石墨烯纤维材料优异的力学、电学、光学性质及其在智能传感、光电器件、柔性电极等领域的应用,并展望了CVD法制备石墨烯纤维材料未来的发展方向。  相似文献   
186.
The flexible stretchable sensors have great potential for implementation in various applications, such as intelligent soft robots, health monitoring, and motion detection. However, most of the flexible stretchable sensors with microstructures and high sensitivities are fabricated by expensive templates and complex processes. In consideration of large-scale fabrication, a low cost and efficient way is in great demand. Herein, electroless plating on Nafion films with decent swelling ratios are proposed to fabricate stretchable sensors with wrinkle-structured electrodes. By adding isopropanol (IPA) to the electroless plating process, the H2O-IPA sensor with larger swelling ratio shows deeper surface wrinkles, higher surface roughness, and better sensitivity to strain. At the same time, the H2O-IPA sensor exhibit good durability (500 cycles). By mounting the sensor on the joint of human finger, the motion of the finger bending and even the bending degree can be accurately detected, indicating the potential use in the field of wearable devices and soft electronic skins.  相似文献   
187.
Candle soot (CS) is a desirable carbon nanomaterial for sensors owing to its highly porous nanostructure and large specific surface area. CS is advantageous in its low-cost and facile preparation compared to graphene and carbon nanotubes, but its pristine nanostructure is susceptible to collapse, hampering its application in electronic devices. This article reports conformal coating of nanoscale crosslinked hydrophilic polymer on CS film using initiated chemical vapor deposition, which well preserved the CS nanostructure and obtained nanoporous CS@polymer composites. Tuning coating thickness enabled composites with different morphologies and specific surface areas. Surprisingly, the humidity sensor made from composite with the lowest filling degree, thus largest specific surface area, showed relatively low sensitivity, which is likely due to its discontinuous structure, thus insufficient conductive channels. Composite sensor with optimum filling degree shows excellent sensing response of more than 103 with the linearity of R2 = 0.9400 within a broad relative humidity range from 11% to 96%. The composite sensor also exhibits outstanding sensing performance compared to literature with low hysteresis (3.00%), a satisfactory response time (28.69 s), and a fast recovery time (0.19 s). The composite sensor is fairly stable and durable even after 24 h soaking in water. Furthermore, embedding a humidity sensor into a face mask realizes real-time monitoring of human breath and cough, suggesting promising applications in respiratory monitoring.  相似文献   
188.
The flexibility of dose and dosage forms makes 3D printing a very interesting tool for personalized medicine, with fused deposition modeling being the most promising and intensively developed method. In our research, we analyzed how various types of disintegrants and drug loading in poly(vinyl alcohol)-based filaments affect their mechanical properties and printability. We also assessed the effect of drug dosage and tablet spatial structure on the dissolution profiles. Given that the development of a method that allows the production of dosage forms with different properties from a single drug-loaded filament is desirable, we developed a method of printing ketoprofen tablets with different dose and dissolution profiles from a single feedstock filament. We optimized the filament preparation by hot-melt extrusion and characterized them. Then, we printed single, bi-, and tri-layer tablets varying with dose, infill density, internal structure, and composition. We analyzed the reproducibility of a spatial structure, phase, and degree of molecular order of ketoprofen in the tablets, and the dissolution profiles. We have printed tablets with immediate- and sustained-release characteristics using one drug-loaded filament, which demonstrates that a single filament can serve as a versatile source for the manufacturing of tablets exhibiting various release characteristics.  相似文献   
189.
The growth of single-walled carbon nanotubes(SWCNTs) on substrates has attracted great interests because of the potential applications in various fields. Carbon monoxide(CO) was used as the carbon source for the growth of SWCNTs on silicon substrates. Random or oriented SWCNTs can be produced by varying the CO flow rate. When the flow rate of CO was as low as 20 sccm(sccm:standard cubic centimeter per minute), dense SWCNT networks with clean surface were produced. When the flow rate was above 50 sccm, vertically aligned SWCNT(VA-SWCNT) arrays were grown. Well-aligned VA-SWCNT arrays were obtained in the temperature range of 650-800℃ and the content of large-diameter(above 1.7 nm) tubes in the array increased with the temperature. The height of the array was affected by the growth temperature, the CO flow rate, and the growth time. These findings indicate CO can be used as an efficient carbon source for the growth of SWCNTs on substrates under low flow rates.  相似文献   
190.
In this work, an economically viable, very low cost, indigenous, ubiquitously available electrochemical sensor based on bimetallic nickel and tungsten nanoparticles modified pencil graphite electrode (NiNP-WNP@PGE) was fabricated for the sensitive and selective detection of bisphenol A (BPA). The NiNP-WNP@PGE sensor was prepared by a facile electrochemical one step co-deposition method. The prepared nanocomposite was morphologically characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), electrochemically by cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The proposed sensor displayed high electrocatalytic activity towards electro-oxidation of BPA with one irreversible peak. The fabricated sensor displayed a wide detection window between 0.025 μM and 250 μM with a limit of detection of 0.012 μM. PGE sensor was successfully engaged for the detection of BPA in bottled water, biological, and baby glass samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号