首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3187篇
  免费   341篇
  国内免费   851篇
化学   3441篇
晶体学   50篇
力学   23篇
综合类   31篇
数学   1篇
物理学   214篇
无线电   619篇
  2024年   21篇
  2023年   153篇
  2022年   170篇
  2021年   256篇
  2020年   237篇
  2019年   168篇
  2018年   149篇
  2017年   154篇
  2016年   190篇
  2015年   143篇
  2014年   165篇
  2013年   261篇
  2012年   269篇
  2011年   173篇
  2010年   158篇
  2009年   213篇
  2008年   179篇
  2007年   220篇
  2006年   173篇
  2005年   156篇
  2004年   129篇
  2003年   116篇
  2002年   111篇
  2001年   62篇
  2000年   50篇
  1999年   59篇
  1998年   44篇
  1997年   41篇
  1996年   17篇
  1995年   33篇
  1994年   27篇
  1993年   21篇
  1992年   19篇
  1991年   6篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   5篇
  1986年   7篇
  1985年   1篇
  1982年   2篇
  1979年   1篇
排序方式: 共有4379条查询结果,搜索用时 15 毫秒
181.
利用改进的Hummers法制备了氧化石墨烯(GO), 以葡萄糖为还原剂直接在GO表面沉积银纳米粒子(AgNPs)得到性能稳定的AgNPs/GO纳米复合材料;基于该纳米复合材料修饰电极构建了一种新型的2, 4, 6-三硝基苯酚(TNP)电化学传感器。采用原子力显微镜(AFM)、扫描电镜(SEM)、透射电镜(TEM)、紫外可见光谱(UV-Vis)和交流阻抗(EIS)等多种方法对纳米复合薄膜进行了表征;并研究了TNP在复合薄膜修饰电极上的电化学行为和动力学性质。结果表明, AgNPs/GO对TNP有较强的电催化活性, 在复合薄膜修饰电极出现一灵敏的氧化峰和3个还原峰;利用氧化峰可对TNP进行定量分析。同时整个电极过程明显不可逆, 电极反应受到吸附步骤控制;复合膜电极表面覆盖度为5.617×10-8 mol·cm-2, 在所研究电位下的速率常数为9.745×10-5 cm·s-1。在pH 6.8的磷酸缓冲液中, 当富集电位为-0.70 V, 富集时间为60 s;TNP氧化峰电流与其浓度在5.0×10-9~1.0×10-7 mol·L-1范围内成良好线性关系, 相关系数为0.995 8, 检出限可达1.0×10-9 mol·L-1。所制备的电化学传感器稳定性和选择性较好;用于实际水样中TNP的现场快速检测, 加标回收率在 97.6%~103.9%之间。  相似文献   
182.
New donor–acceptor conjugated polymers (P1 and P2) containing a fused-ring dithienobenzothiadiazole (DT-BTD building block) were synthesized by using the Stille copolymerization method. The synthesized polymers were characterized by 1H NMR, GPC, and elemental analysis. The optical band gaps of the polymers were found to be 1.86 and 1.9 eV, respectively, as calculated from their film onset absorption edge. Upon annealing both produced a distinct shoulder peak in their film absorption spectra. The electrochemical studies of P1 and P2 revealed that the HOMO and LUMO energy levels of the polymer were −5.3, −5.1 eV, and −3.4, −3.2 eV, respectively. The polymers are thermally stable up to 250–350 °C.  相似文献   
183.
Electroless Ni–P and Ni–P–TiCN composite coatings have been deposited successfully on Al substrates. Scanning electron microscopy (SEM) and energy dispersive X‐ray (EDX) techniques were applied to study the surface morphology and the chemical composition of the deposited films. Moreover, X‐ray diffraction (XRD) proved that Ni–P and Ni–P–TiCN deposits have amorphous structures. The properties of Ni–P–TiCN/Al composite films such as hardness, corrosion resistance and electrocatalytic activity were examined and compared with that of Ni–P/Al film. The results of hardness measurements reveal that the presence of TiCN particles with Ni–P matrix improves its hardness. Additionally, the performance against corrosion was examined using Tafel lines and electrochemical impedance spectroscopy techniques in both of 0.6 M NaCl and a mixture of 0.5 M H2SO4 with 2 ppm HF solutions. The results indicate that the incorporation of high dispersed TiCN particles into Ni–P matrix led to a positive shift of the corrosion potential and an increase in the corrosion resistance for all aluminum substrates after their coating with Ni–P–TiCN. In addition, Ni–P–TiCN/Al electrodes showed a higher electrochemical catalytic activity and stability toward methanol oxidation in 0.5 M NaOH solution compared with that of Ni–P/Al. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
184.
A polyacrylonitrile‐based carbon fiber was electrochemically oxidized in an aqueous ammonium bicarbonate solution with current density of up to 2.76 A/m2 at room temperature. X‐ray photoelectron spectroscopy revealed that the oxygen content increased with increasing current density before approaching saturation. The increase can be divided into two regions, the rapid increase region (0–1.78 A/m2) and a plateau region (1.78–2.76 A/m2). The surface chemistry analysis showed that the interlaminar shear strength (ILSS) value of the carbon fiber/epoxy composite could be improved by 24.7%. The carbon structure was examined using Raman spectroscopy in terms of order/disorder in the graphite structure and the results indicated that the relative percentage of graphite carbon in the form of sp2 hybridization increased above a current density of 1.39 A/m2. The increasing non‐polar graphite carbon on the carbon fiber surface decreased the surface energy. As a result, both the surface free energy () and its polar component () decreased when current density increased above 1.78 A/m2. The ILSS value had no direct relationship with the nature and surface density of the oxygen‐containing functional groups nor with the carbon structure. It is the surface free energy (), especially the polar component (), which played a critical role in affecting the interfacial adhesion of carbon fiber/epoxy composites. The ILSS value changed with increasing current density and could be divided into three distinct regions, as chemical interaction region (I), anchor force region (II) and matrix damage region (III). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
185.
Nano-crystalline FeOOH particles(5~10 nm) have been uniformly mixed with electric matrix of single-walled carbon nanotubes(SWNTs)for forming FeOOH/SWNT composite via a facile ultrasonication method. Directly using the FeOOH/SWNT composite(containing 15 wt%SWNTs) as anode material for lithium battery enhances kinetics of the Li+insertion/extraction processes, thereby effectively improving reversible capacity and cycle performance, which delivers a high reversible capacity of 758 mAh g-1under a current density of 400 mA g-1even after 180 cycles, being comparable with previous reports in terms of electrochemical performance for FeOOH anode. The good electrochemical performance should be ascribed to the small particle size and nano-crystalline of FeOOH, as well as the good electronic conductivity of SWNT matrix.  相似文献   
186.
187.
The detection of cancer biomarkers is of great significance for the early screening of cancer. Detecting the content of sarcosine in blood or urine has been considered to provide a basis for the diagnosis of prostate cancer. However, it still lacks simple, high-precision and wide-ranging sarcosine detection methods. In this work, a Ti3C2TX/Pt–Pd nanocomposite with high stability and excellent electrochemical performance has been synthesized by a facile one-step alcohol reduction and then used on a glassy carbon electrode (GCE) with sarcosine oxidase (SOx) to form a sarcosine biosensor (GCE/Ti3C2TX/Pt–Pd/SOx). The prominent electrocatalytic activity and biocompatibility of Ti3C2TX/Pt–Pd enable the SOx to be highly active and sensitive to sarcosine. Under the optimized conditions, the prepared biosensor has a wide linear detection range to sarcosine from 1 to 1000 µM with a low limit of detection of 0.16 µM (S/N = 3) and a sensitivity of 84.1 µA/mM cm2. Besides, the reliable response in serum samples shows its potential in the early diagnosis of prostate cancer. More importantly, the successful construction and application of the amperometric biosensor based on Ti3C2TX/Pt–Pd will provide a meaningful reference for detecting other cancer biomarkers.  相似文献   
188.
Alpha-synuclein (α-Syn) localizes at presynaptic terminal and modulates synaptic functions. Increasing evidence demonstrate that α-Syn oligomers, forming at the early of aggregation, are cytotoxic and is thus related to brain neurodegenerative diseases. Herein, we find that vitamin D (VD) can reduce neurocytotoxicity. The reduced neurocytotoxicity might be attributed to the less amount of large-sized α-Syn oligomers inhibited by VD, measured by electrochemical collision at single particle level, which are not observable with traditionally ensembled method. Single-cell amperometry (SCA) results show that VD can recover the amount of neurotransmitter release during exocytosis induced by α-Syn oligomers, further verifying the neuroprotection of VD. Our study reveals the neuroprotective role of VD through inhibiting α-Syn aggregation, which is envisioned to be of great importance in treatment and prevention of the neurodegenerative diseases.  相似文献   
189.
Electrochemical interfaces are key structures in energy storage and catalysis. Hence, a molecular understanding of the active sites at these interfaces, their solvation, the structure of adsorbates, and the formation of solid-electrolyte interfaces are crucial for an in-depth mechanistic understanding of their function. Vibrational sum-frequency generation (VSFG) spectroscopy has emerged as an operando spectroscopic technique to monitor complex electrochemical interfaces due to its intrinsic interface sensitivity and chemical specificity. Thus, this review discusses the happy get-together between VSFG spectroscopy and electrochemical interfaces. Methodological approaches for answering core issues associated with the behavior of adsorbates on electrodes, the structure of solvent adlayers, the transient formation of reaction intermediates, and the emergence of solid electrolyte interphase in battery research are assessed to provide a critical inventory of highly promising avenues to bring optical spectroscopy to use in modern material research in energy conversion and storage.  相似文献   
190.
A facile and environmentally friendly electrochemical protocol is herein reported for the C(sp2)−C(sp3) cross dehydrogenative coupling between imidazopyridines and N,N-dimethylanilines. The broad functional group compatibility includes halogens, ester, alcohol, sulfone as well as thiophene. This methodology is also suitable for benzo[d]imidazo[2,1-b]thiazole, thiazoimidazole and tetrahydroisoquinoline, and can be scaled up to 5 mmol. Mechanistic insights are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号