首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   79篇
  国内免费   16篇
化学   199篇
力学   1篇
物理学   8篇
无线电   138篇
  2024年   1篇
  2023年   46篇
  2022年   17篇
  2021年   39篇
  2020年   69篇
  2019年   28篇
  2018年   39篇
  2017年   20篇
  2016年   17篇
  2015年   11篇
  2014年   20篇
  2013年   11篇
  2012年   6篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  1998年   1篇
排序方式: 共有346条查询结果,搜索用时 15 毫秒
101.
Phosphorene, generally defined as two-dimensional (2D) black phosphorus (BP) with monolayered or few-layered structure, has emerged as a promising member of the family of 2D materials. Since its discovery in 2014, extensive research has been focused on broadening its applications, covering the biological, photoelectric, and electrochemical fields, owing to the unique physicochemical and structural properties. As a single-elemental material, phosphorene has demonstrated its applicability for the preparation of efficient electrocatalysts for hydrogen evolution reaction (HER), oxygen evolution reaction (OER), nitrogen reduction reaction (NRR), and other electrocatalytic applications. In this Minireview, a summary of the very recent research progresses of phosphorene in electrocatalysis is offered, with a special focus on the effective synthetic strategies towards performance improvement. In the concluding section, challenges and perspectives are also discussed.  相似文献   
102.
The hydroxide‐exchange membrane fuel cell (HEMFC) is a promising energy conversion device. However, the development of HEMFC is hampered by the lack of platinum‐group‐metal‐free (PGM‐free) electrocatalysts for the hydrogen oxidation reaction (HOR). Now, a Ni catalyst is reported that exhibits the highest mass activity in HOR for a PGM‐free catalyst as well as excellent activity in the hydrogen evolution reaction (HER). This catalyst, Ni‐H2‐2 %, was optimized through pyrolysis of a Ni‐containing metal‐organic framework precursor under a mixed N2/H2 atmosphere, which yielded carbon‐supported Ni nanoparticles with different levels of strains. The Ni‐H2‐2 % catalyst has an optimal level of strain, which leads to an optimal hydrogen binding energy and a high number of active sites.  相似文献   
103.
104.
Benefiting from unique excellent physical and chemical characteristics, graphene has attracted widespread attention in the application of electrocatalysis. As a promising candidate, graphene is usually regulated with surface defects, heteroatoms, metal atoms and other active materials through covalent or non‐covalent bonds to substitute for noble metal catalysts, which has not been targeted in a report yet. In this review, we summarize the recent advances of approaches for engineering graphene‐based electrocatalysts and emphasize the corresponding electrocatalytic active sites in various electrocatalysis circumstances, such as electrocatalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), etc. The opportunities and challenges in the future development of graphene‐based catalysts are also discussed.  相似文献   
105.
Non‐precious Fe/N co‐modified carbon electrocatalysts have attracted great attention due to their high activity and stability in oxygen reduction reaction (ORR). Compared to iron‐free N‐doped carbon electrocatalysts, Fe/N‐modified electrocatalysts show four‐electron selectivity with better activity in acid electrolytes. This is believed relevant to the unique Fe–N complexes, however, the Fe–N structure remains unknown. We used o,m,p‐phenylenediamine as nitrogen precursors to tailor the Fe–N structures in heterogeneous electrocatalysts which contain FeS and Fe3C phases. The electrocatalysts have been operated for 5000 cycles with a small 39 mV shift in half‐wave potential. By combining advanced electron microscopy and Mössbauer spectroscopy, we have identified the electrocatalytically active Fe–N6 complexes (FeN6, [FeIII(porphyrin)(pyridine)2]). We expect the understanding of the FeN6 structure will pave the way towards new advanced Fe–N based electrocatalysts.  相似文献   
106.
Nitrogen‐doped carbon (NC) materials have been proposed as next‐generation oxygen reduction reaction (ORR) catalysts to significantly improve scalability and reduce costs, but these alternatives usually exhibit low activity and/or gradual deactivation during use. Here, we develop new 2D sandwich‐like zeolitic imidazolate framework (ZIF) derived graphene‐based nitrogen‐doped porous carbon sheets (GNPCSs) obtained by in situ growing ZIF on graphene oxide (GO). Compared to commercial Pt/C catalyst, the GNPCSs show comparable onset potential, higher current density, and especially an excellent tolerance to methanol and superior durability in the ORR. Those properties might be attributed to a synergistic effect between NC and graphene with regard to structure and composition. Furthermore, higher open‐circuit voltage and power density are obtained in direct methanol fuel cells.  相似文献   
107.
With the ultimate goal of simultaneously finding cost-effective, more earth-abundant, and high-performance alternatives to commercial Pt/Pd-based catalysts for electrocatalysis, this review article highlights advances in the use of perovskite metal oxides as both catalysts and catalyst supports towards the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) within a direct methanol fuel cell (DMFC) configuration. Specifically, perovskite metal oxides are promising as versatile functional replacements for conventional platinum-group metals, in part because of their excellent ionic conductivity, overall resistance to corrosion, good proton-transport properties, and potential for interesting acidic surface chemistry, all of which contribute to their high activity and reasonable stability, especially within an alkaline electrolytic environment.  相似文献   
108.
109.
邵玉艳  尹鸽平  高云智 《结构化学》2004,23(11):1316-1324
文本综述了CO在Pt及其它过渡金属上电化学氧化机理的量子化学研究现状。系统论述了密度泛函理论计算在催化剂对CO电氧化的作用机制和CO与金属间吸附、成键及振动频率方面所给出的详细信息, 并指出了量子化学计算结果对于电极催化剂设计的指导意义。最后, 指出了目前量子化学计算的局限性并展望来其未来发展趋势。  相似文献   
110.
A facile, scalable route to new nanocomposites that are based on carbon nanotubes/heteroatom‐doped carbon (CNT/HDC) core–sheath nanostructures is reported. These nanostructures were prepared by the adsorption of heteroatom‐containing ionic liquids on the walls of CNTs, followed by carbonization. The design of the CNT/HDC composite allows for combining the electrical conductivity of the CNTs with the catalytic activity of the heteroatom‐containing HDC sheath layers. The CNT/HDC nanostructures are highly active electrocatalysts for the oxygen reduction reaction and displayed one of the best performances among heteroatom‐doped nanocarbon catalysts in terms of half‐wave potential and kinetic current density. The four‐electron selectivity and the exchange current density of the CNT/HDC nanostructures are comparable with those of a Pt/C catalyst, and the CNT/HDC composites were superior to Pt/C in terms of long‐term durability and poison tolerance. Furthermore, an alkaline fuel cell that employs a CNT/HDC nanostructure as the cathode catalyst shows very high current and power densities, which sheds light on the practical applicability of these new nanocomposites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号