首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1944篇
  免费   264篇
  国内免费   349篇
化学   520篇
晶体学   62篇
力学   145篇
综合类   10篇
数学   13篇
物理学   562篇
无线电   1245篇
  2024年   4篇
  2023年   22篇
  2022年   36篇
  2021年   46篇
  2020年   43篇
  2019年   47篇
  2018年   38篇
  2017年   86篇
  2016年   84篇
  2015年   80篇
  2014年   90篇
  2013年   116篇
  2012年   132篇
  2011年   138篇
  2010年   134篇
  2009年   134篇
  2008年   139篇
  2007年   135篇
  2006年   148篇
  2005年   129篇
  2004年   97篇
  2003年   75篇
  2002年   74篇
  2001年   57篇
  2000年   51篇
  1999年   75篇
  1998年   46篇
  1997年   52篇
  1996年   32篇
  1995年   33篇
  1994年   25篇
  1993年   28篇
  1992年   16篇
  1991年   23篇
  1990年   21篇
  1989年   9篇
  1988年   11篇
  1987年   4篇
  1986年   12篇
  1985年   3篇
  1984年   6篇
  1983年   4篇
  1982年   7篇
  1981年   6篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1975年   1篇
排序方式: 共有2557条查询结果,搜索用时 15 毫秒
91.
Zeolites are widely used in many commercial processes, mostly as catalysts or adsorbents. Understanding their intimate structure at the nanoscale is the key to control their properties and design the best materials for their ever increasing uses. Herein, we report a new and controllable fluoride treatment for the non‐discriminate extraction of zeolite framework cations. This sheds new light on the sub‐structure of commercially relevant zeolite crystals: they are segmented along defect zones exposing numerous nanometer‐sized crystalline domains, separated by low‐angle boundaries, in what were apparent single‐crystals. The concentration, morphology, and distribution of such domains analyzed by electron tomography indicate that this is a common phenomenon in zeolites, independent of their structure and chemical composition. This is a milestone to better understand their growth mechanism and rationally design superior catalysts and adsorbents.  相似文献   
92.
干胶法合成分子筛   总被引:1,自引:0,他引:1  
杨娜  岳明波  王一萌 《化学进展》2012,(Z1):253-261
相对于传统的水热合成法,干胶法(dry gel conversion,DGC)合成分子筛具有产量高、废液量少等优势。本文综述了近十年来DGC合成分子筛的研究进展。以水为线索,总结了外加水和固有水(指原料干胶所含的水)在DGC中对分子筛的生长、晶相的转换与物化性质的影响,论述了在DGC条件下分子筛的生长过程和晶化机理,介绍了DGC在介孔-微孔复合分子筛、分子筛膜、单块材料等新型分子筛材料合成中的一些实例。  相似文献   
93.
基于微型通道自身的层流特点而发展起来的多相层流技术,从最初的液-液微萃取开始,由于其结构加工简单、操作方便和分析功能强大,已逐渐发展成为一种加工分析方法,为微流控分析的研究应用打开了一个崭新的局面。本文概述了层流的基本原理,总结了近10年来在这方面的研究,包括层流界面间的分子扩散、转移现象和化学反应,以及层流刻蚀加工技术及其在制备纳米材料和在生命医学方面的应用。具体介绍了应用层流技术进行微芯片的加工制作,微型反应器的制备,离子、分子的分离分析,聚合物薄膜的形成和应用,微通道内有机合成反应的控制,溶液的浓度梯度控制以及在免疫检测中的应用,对细胞、生物大分子的操作控制,以及对生物试剂的预处理分析等。  相似文献   
94.
本文采用中频感应提拉法成功生长了未掺杂的Y2SiO5(YSO)晶体,经过定向、切割、抛光后得到样品.经过腐蚀后,利用大视场显微镜和扫描电镜在样品表面上观察到了菱形和四边形的位错蚀坑、小角晶界和包裹物等缺陷;测试了经过氢气、空气退火前后,辐照前后YSO晶体的透过谱,结果表明:YSO晶体的吸收边大约在202nm,氢气退火后在200~300nm波段透过率增加,空气退火后透过率显著降低;辐照后,氢气退火的样品在200~500nm波段透过率显著降低.  相似文献   
95.
TiB2增强Al2O3陶瓷刀具高速干切削摩擦磨损性能   总被引:6,自引:2,他引:6  
采用TiB2增强Al2O3陶瓷刀具对淬硬钢进行高速干切削试验,利用切削高温作用下的摩擦化学反应,在刀具表面原位生成具有润滑作用的反应膜,从而实现Al2O3/TiB2陶瓷刀具的自润滑.结果表明:低速干切削时,Al2O3/TiB2陶瓷刀具的磨损机制主要表现为粘着磨损和磨料磨损;而在高速干切削时,刀具的磨损机制主要表现为氧化磨损,刀具表面经由氧化反应生成具有润滑作用的反应膜而起到固体润滑作用,从而使刀具的耐磨性能提高,随着TiB2含量和切削速度的增加,反应膜的减摩抗磨作用增强;而在切削区通入氮气时,由于刀具表面氧化膜形成受阻,刀具的抗磨能力有所降低.  相似文献   
96.
氧化锆陶瓷的摩擦磨损行为与机理   总被引:9,自引:1,他引:9  
氧化锆陶瓷的工程应用前景广阔,在许多场合都必须与水或水溶液接触,但有关这种陶恣在水中的摩擦磨损行为和机理的研究报道不多见,而且已有的工作也不够深入。因此,对氧化锆陶瓷分别在水润滑和干摩擦下的摩擦学特性及其磨损机理进行了考察。  相似文献   
97.
滑动干摩擦条件下铸铁的摩擦学特性研究   总被引:3,自引:4,他引:3  
系统地研究了铸铁材料在干滑动摩擦条件下的摩擦学特性。考察了铸铁石墨形态、合金元素及基体组织对其与钢配副时的滑动摩擦学特性的影响。研究结果表明:蠕墨铸铁具有良好的摩擦磨损特性;在铸铁中加入合金元素P和B可显著改善摩擦副的性能;同时,铸铁的基体组织对于摩擦磨损特性有十分显著的影响。  相似文献   
98.
以坛紫菜为试验材料,研究不同强度酸雨(pH值分别为5.6、4.5、4.0、3.5)对坛紫菜生理特性的影响.试验中测定了坛紫菜细胞膜透性、抗氧化酶活性及叶绿素荧光参数等生理指标,以比较适当干出和完全浸泡、黑暗和光照条件下酸雨胁迫对坛紫菜生理特性的影响.结果表明:(1)经过不同方式处理的模拟酸雨处理后,适当干出处理的坛紫菜...  相似文献   
99.
采用特别设计的InGaAsP/InP多量子阱结构(MQW),研究了Cl2/H2电感耦合等离子体(ICP)刻蚀损伤,优化了低损伤ICP刻蚀的关键工艺参数,得到了一种低损伤、形貌良好的Bragg光栅的制作方法。结合优化的InP材料金属有机物化学气相沉积(MOCVD)外延生长工艺,制作出1.55μm分布反馈(DFB)激光器,端面镀膜前其阈值电流和斜率效率分别为15mA和0.3mW/mA,边模抑制比大于45dB。寿命加速老化实验结果显示,该器件40℃的中值寿命超过2×106h,表明了本文ICP光栅刻蚀工艺的可靠性。  相似文献   
100.
概述了近年来国内外对铌酸锂(LN)晶体干法刻蚀技术的研究进展。根据刻蚀原理和特点,现有的LN干法刻蚀技术可分为等离子体刻蚀、激光微加工技术和Ti扩散电化学刻蚀。对各刻蚀方法及其研究进展进行了总结,分析了不同干法刻蚀方法之间的区别和联系,并对各方法中存在的问题进行了探讨。其中等离子体刻蚀技术由于其良好的图形转移特性,得到了最广泛的应用;激光微加工技术在制备光子晶体结构和微光栅结构中具有独特的优势;Ti扩散电化学刻蚀LN为制备大尺寸的LN基结构指明了新的方向。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号