首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   992篇
  免费   110篇
  国内免费   22篇
化学   574篇
晶体学   3篇
力学   19篇
综合类   5篇
数学   119篇
物理学   289篇
无线电   115篇
  2024年   2篇
  2023年   23篇
  2022年   38篇
  2021年   30篇
  2020年   45篇
  2019年   43篇
  2018年   58篇
  2017年   74篇
  2016年   40篇
  2015年   51篇
  2014年   45篇
  2013年   83篇
  2012年   64篇
  2011年   65篇
  2010年   52篇
  2009年   61篇
  2008年   43篇
  2007年   41篇
  2006年   48篇
  2005年   28篇
  2004年   33篇
  2003年   25篇
  2002年   28篇
  2001年   16篇
  2000年   16篇
  1999年   7篇
  1998年   7篇
  1997年   8篇
  1996年   6篇
  1995年   5篇
  1994年   7篇
  1993年   10篇
  1992年   7篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1980年   2篇
排序方式: 共有1124条查询结果,搜索用时 15 毫秒
941.
Parabens are a family of synthetic esters of p-hydroxibenzoic acid widely used as preservatives in cosmetics and health-care products, among other daily-use commodities. Recently, their potential endocrine disrupting effects have raised concerns about their safety and their potential effects as emerging pollutants, leading to the regulation of the presence of parabens in commercial products by national and trans-national organizations. Also, this has led to an interest in developing sensible and reliable methods for their determination in environmental samples, cosmetics and health-care products.  相似文献   
942.
建立了超声辅助分散乳液微萃取技术结合高效液相色谱法(HPLC)同时测定辣椒粉中对位红、苏丹红Ⅰ、苏丹红Ⅱ、苏丹红Ⅲ、苏丹红Ⅳ的方法。考察了萃取剂的种类及其体积、分散剂体积分数、盐效应、p H值、萃取时间和离心时间等因素对萃取效果的影响,确定最佳萃取条件为:0.75 m L环己烷为萃取剂,10%乙腈为分散剂,振荡1 min,以6 000 r/min离心5 min,吸取萃取相过0.22μm有机尼龙滤头,进行HPLC分析。最优条件下,在辣椒粉中分别添加50,250,1 000 ng/g 3个水平的染色剂,测得市售散装、包装辣椒粉中5种染色剂的加标回收率为82%~114%,相对标准偏差(RSD,n=3)为0.7%~8.8%。所有目标化合物在25~5 000 ng/m L范围内线性良好,相关系数(r2)均不小于0.998 9;检出限为1~11 ng/m L。本方法具有简单快捷、灵敏准确等特点,满足辣椒粉中5种染色剂检测的要求。  相似文献   
943.
Synthetic helicases can be designed on the basis of ligands that bind more strongly to single‐stranded nucleic acids than to double‐stranded nucleic acids. This can be achieved with ligands containing phenyl groups, which intercalate into single strands, but due to their small size not into double strands. Moreover, two phenyl rings are combined with a distance that allows bis‐intercalation with only single strands and not double strands. In this respect, such ligands also mimic single‐strand binding (SSB) proteins. Exploration with more than 23 ligands, mostly newly synthesised, shows that the distance between the phenyl rings and between those and the linker influence the DNA unwinding efficiency, which can reach a melting point decrease of almost ΔTm=50 °C at much lower concentrations than that with any other known artificial helicases. Conformational pre‐organisation of the ligand plays a decisive role in optimal efficiency. Substituents at the phenyl rings have a large effect, and increase, for example, in the order of H<F<Cl<Br, which illustrates the strong role of dispersive interactions in intercalation. Studies with homopolymers revealed significant selectivity: for example, with a ligand concentration of 40 μM at 35 °C, only GC double strands melt (ΔTm=48 °C), whereas the AT strand remains untouched, and with poly(rA)–poly(rU) as an RNA model one observes unfolding at 29 °C with a concentration of only 30 μM .  相似文献   
944.
A cellulose–graphite oxide composite was synthesized and characterized as an adsorbent for dispersive solid-phase extraction of rhodium from various samples before atomic absorption detection. The pH, adsorbent volume, centrifugation time and rate, eluent concentration, volume and type, adsorption and elution contact time, sample volume, and matrix interferences were optimized. The developed method is simple, rapid, and inexpensive. The tolerance limits for rhodium were 10,000?mg?L?1 sodium, 25,000?mg?L?1 potassium, 10,000?mg?L?1 magnesium, and 20,000?mg?L?1 calcium. The recovery for rhodium exceeded 95%. Elution was performed with 10?mL of 2.5?mol?L?1 H2SO4. The adsorption and elution contact times were 30 and 60?s, respectively. The detection limit of the method for rhodium was 5.4?µg?L?1 and the precision as the relative standard deviation was 1.6%. A certified reference material 2556 (used auto catalyst pellets) and fortified samples were analyzed to evaluate the accuracy of the method. The optimized method was used for the preconcentration of rhodium from tap water, well water, wastewater, seawater, catalytic converters, and street dust.  相似文献   
945.
Dispersive liquid–liquid microextraction using deep eutectic solvents, as novel extraction solvents, was developed for the separation, preconcentration, and determination of chlorophenol, 2,3-dihydroxybenzoic acid, p-cresol, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol in vegetable oil. Seven deep eutectic solvents composed of choline chloride and different hydrogen bond donors (ethyl glycol, glycerol, 1,2-butanediol, 1,4-butanediol, 1,6-hexanediol, urea, and acetic acid) were characterized. The deep eutectic solvents formed by choline chloride-1,6-hexanediol in a 1:2 molar ratio provided the highest extraction efficiency. The sonication time, deep eutectic solvent volume, and disperser solvent were optimized. Under the optimal conditions of a sonication time of 11?min, a deep eutectic solvent volume of 90?µL, and acetone as the disperser solvent, extraction recoveries from 76.1 to 88.3% were obtained with 8.46 to 9.46 enrichment factors and the limits of detection exceeding 0.1?µg/mL with the relative standard deviations from 1.0 to 3.5%. This method using dispersive liquid–liquid microextraction with deep eutectic solvents is simple and provides high enrichment.  相似文献   
946.
High-pressure processing (HPP) has emerged over the last 2 decades as a good alternative to traditional thermal treatment for food safety and shelf-life extension, supplying foods with similar characteristics to those of fresh products. Currently, HPP has also been proposed as a useful tool to reduce food contaminants, such as pesticides and mycotoxins. The aim of the present study is to explore the effect of HPP technology at 600 MPa during 5 min at room temperature on alternariol (AOH) and aflatoxin B1 (AFB1) mycotoxins reduction in different juice models. The effect of HPP has also been compared with a thermal treatment performed at 90 °C during 21 s. For this, different juice models, orange juice/milk beverage, strawberry juice/milk beverage and grape juice, were prepared and spiked individually with AOH and AFB1 at a concentration of 100 µg/L. After HPP and thermal treatments, mycotoxins were extracted from treated samples and controls by dispersive liquid–liquid microextraction (DLLME) and determined by HPLC-MS/MS-IT. The results obtained revealed reduction percentages up to 24% for AFB1 and 37% for AOH. Comparing between different juice models, significant differences were observed for AFB1 residues in orange juice/milk versus strawberry juice/milk beverages after HPP treatment. Moreover, HPP resulted as more effective than thermal treatment, being an effective tool to incorporate to food industry in order to reach mycotoxins reductions.  相似文献   
947.
A new analytical temperature-assisted ionic liquid-based dispersive liquid–liquid microextraction (TA-IL-DLLME) method was developed for glyphosate and aminomethylphosphonic acid determination in water samples. Extracted analytes were derivatized using 9-fluoroenylmethylchloroformate and quantified by liquid chromatography with fluorescence detection. For the TA-IL-DLLME method, two strategies for phase solubilization were evaluated; in approach 1, the ionic liquid and aqueous matrix sample were mixed and then heated, while in approach 2, the aqueous sample was first heated and then the ionic liquid was injected. For both approaches, optimization included parameters that significantly affect extraction efficiency: ionic liquid type and volume, solubilization temperature and time, cooling and centrifugation time. Among the evaluated ionic liquids, 1-decyl-3-methylimidazolium tetrafluoroborate showed the best performance for TA-IL-DLLME and was selected for the two solubilization approaches; with approach 2, slightly better results were obtained. Thus, sample analyses were performed using a procedure based on approach 2. An important matrix effect, attributed to the presence of salts and metals in real water samples was observed. Sample acidification before derivatization allowed this problem to diminish, with recoveries ranging from 75 and 99%, and enrichment factors between 57 and 76 for target analytes.  相似文献   
948.
7α-Hydroxy cholesterol (7α-OHC), 25-hydroxy cholesterol (25-OHC), 27-hydroxy cholesterol (27-OHC), 4β-hydroxy cholesterol (4β-OHC), 7α-hydroxy-4-cholesten-3-one (7α-C4), 5β-cholestane-3α, 7α, 12α-triol (5β-Triol), cholic acid (CA), and chenodeoxycholic acid (CDCA) are known biomarkers of neurodegenerative diseases. A method for their simultaneous determination in human plasma has been optimized using dispersive liquid–liquid microextraction and ultra-performance liquid chromatography–tandem mass spectrometry. The limits of quantification of the target compounds were in the range of 0.3–3.3?µg/L. The precision achieved by this method was less than 13.4% for intraday and interday analyses. The proposed method was used to analyze eight cholesterol oxidation products in 30 human plasma samples. The analytical results were in a concentration range of 1.6–87.4?µg/L for 7α-OHC, 6.3–58.2?µg/L for 25-OHC, 12.1–98.5?µg/L for 27-OHC, 5.7–64.8?µg/L for 4β-OHC, 1.5–124.1?µg/L for 7α-C4, 0.5–16.5?µg/L for 5β-Triol, 13.1–245?µg/L for CA, and 19.6–487?µg/L for CDCA in the samples. The method may be used for the analysis of biomarkers of neurodegenerative diseases.  相似文献   
949.
A sensitive method for the determination of mexiletine and lidocaine using surfactant‐assisted dispersive liquid–liquid microextraction coupled with capillary electrophoresis was developed. Triton X‐100 and dichloromethane were used as the dispersive agent and extraction solvent, respectively. After the extraction, mexiletine and lidocaine were analyzed using capillary electrophoresis with ultraviolet detection. The detection sensitivity was further enhanced through the use of field‐amplified sample stacking. Under optimal extraction and stacking conditions, the calibration curves were linear over a concentration range of 0.05–1.00 μM for mexiletine and 0.03–1.00 μM for lidocaine. The limits of detection (signal‐to‐noise ratio of 3) were 0.01 and 0.01 μM for mexiletine and lidocaine, respectively. An approximately 1141‐ to 1250‐fold improvement in sensitivity was observed for the two analytes compared with the injection of a standard solution without the surfactant‐assisted dispersive liquid–liquid microextraction and field‐amplified sample stacking procedures. This developed method was successfully applied to the determination of mexiletine and lidocaine in human urine and serum samples. Both precision and accuracy for urine and serum samples were less than 8.7 and 6.7%, respectively. The recoveries of the two analytes from urine and serum samples were 54.7–64.9% and 16.1–56.5%, respectively.  相似文献   
950.
A new, simple, and rapid syringe‐to‐syringe dispersive liquid‐phase microextraction with solidified floating organic drop was used for the separation and preconcentration of ochratoxin A from grain and juice samples before its quantification using high‐performance liquid chromatography and fluorescence detection. Factors influencing the microextraction efficiency of ochratoxin A, such as sample solution pH, type and volume of organic extractant, salt concentration, number of injections, and volume of the sample, were studied and optimized. Under the optimum properties, the calibration graph showed linearity in the range of 65.0–700.0 ng/L (coefficient of determination = 0.9991). The limit of detection was 20.0 ng/L. The inter‐day and intra‐day relative standard deviations were in the range of 5.0–8.5%. This method was successfully applied for the quantification of ochratoxin A in grain and juice samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号