首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   992篇
  免费   110篇
  国内免费   22篇
化学   574篇
晶体学   3篇
力学   19篇
综合类   5篇
数学   119篇
物理学   289篇
无线电   115篇
  2024年   2篇
  2023年   23篇
  2022年   38篇
  2021年   30篇
  2020年   45篇
  2019年   43篇
  2018年   58篇
  2017年   74篇
  2016年   40篇
  2015年   51篇
  2014年   45篇
  2013年   83篇
  2012年   64篇
  2011年   65篇
  2010年   52篇
  2009年   61篇
  2008年   43篇
  2007年   41篇
  2006年   48篇
  2005年   28篇
  2004年   33篇
  2003年   25篇
  2002年   28篇
  2001年   16篇
  2000年   16篇
  1999年   7篇
  1998年   7篇
  1997年   8篇
  1996年   6篇
  1995年   5篇
  1994年   7篇
  1993年   10篇
  1992年   7篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1980年   2篇
排序方式: 共有1124条查询结果,搜索用时 31 毫秒
31.
A simple, rapid and efficient method, dispersive liquid–liquid microextraction (DLLME) in conjunction with high-performance liquid chromatography (HPLC), has been developed for the determination of three carbamate pesticides (methomyl, carbofuran and carbaryl) in water samples. In this extraction process, a mixture of 35 µL chlorobenzene (extraction solvent) and 1.0 mL acetonitrile (disperser solvent) was rapidly injected into the 5.0 mL aqueous sample containing the analytes. After centrifuging (5 min at 4000 rpm), the fine droplets of chlorobenzene were sedimented in the bottom of the conical test tube. Sedimented phase (20 µL) was injected into the HPLC for analysis. Some important parameters, such as kind and volume of extraction and disperser solvent, extraction time and salt addition were investigated and optimised. Under the optimum extraction condition, the enrichment factors and extraction recoveries ranged from 148% to 189% and 74.2% to 94.4%, respectively. The methods yielded a linear range in the concentration from 1 to 1000 µg L?1 for carbofuran and carbaryl, 5 to 1000 µg L?1 for methomyl, and the limits of detection were 0.5, 0.9 and 0.1 µg L?1, respectively. The relative standard deviations (RSD) for the extraction of 500 µg L?1 carbamate pesticides were in the range of 1.8–4.6% (n = 6). This method could be successfully applied for the determination of carbamate pesticides in tap water, river water and rain water.  相似文献   
32.
In the current paper we describe a novel sample preparation technique termed dispersive liquid-phase microextraction for the preconcentration and determination of 2,2,2-trichloro-1,1-bis(4-chlorophenyl)ethanol (dicofol) and its degradation products in water samples that includes 2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethene(2,4′-DDE), 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane(4,4′-DDE) and 1,1,1-trichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl)ethane (2,4′-DDT) coupled with gas chromatography mass spectrometry (GC-MS), in which a new ionic liquid 1,3-diisooctylimidazolium hexafluorophosphate abbreviated as [D(i-C8)IM][PF6] was used as extraction solvent. For each one extraction, 1.00 mL of the methanol solution containing 40 µL of the ionic liquid was sprayed into 25.00 mL of water sample. In the meantime the ionic liquid was finely dispersed into the aqueous phase and analytes were rapidly migrated into the ionic liquid. After the solution was centrifuged for 2 min at 5000 rpm, the droplets of the ionic liquid are subsided in the bottom of the conical test tube (30.0 ± 0.2 µL). Moreover, the factors relevant to extraction efficiencies were investigated and optimised including the volume of the ionic liquid, disperser solvent, extraction time, sample pH and ionic strength. Under optimal conditions, the enrichment factors of the extraction were between 550 and 725 with an extraction efficiency ranging from 66% to 87% for each different analyte. Finally, 1.0 µL of the ionic liquid collected from above extraction was injected into the injector block of GC-MS instrument for analysis. The detection limit (S/N = 3), the relative standard deviations for 2.0 µg L?1 of the standard analyte (n = 5) and linearity in a calibration range were found to be 3–8 ng L?1, 1.0–2.7% and 10–3000 ng L?1, respectively. Good spiked recoveries over the range of 92.0–13.5% were obtained. The proposed method offers the advantages of simplicity of operation, rapidity, good extraction efficiency and enrichment factor; it has been successfully applied to determination of dicofol and its degradation products in environmental water samples.  相似文献   
33.
Dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–electron capture detection (GC–ECD), has been developed for the extraction and determination of 14 organochlorine pesticides (hexachlorocyclohexanes (α-HCH, β-HCH and δ-HCH), Lindane (γ-HCH), Aldrin, Dieldrin, Endrin, Heptachlor, Heptachlor epoxide, α-Chlordane, β-Chlordane and p,p′-DDT, p,p′-DDD, p,p′-DDE) in river water samples. Factors relevant to the microextraction efficiency, such as the kind of extraction and disperser solvent, their volume and the salt effect was investigated and optimised. In this method the appropriate mixture of extraction solvent (13.5 µL carbon disulphide) and disperser solvent (0.50 mL acetone) were rapidly injected into the aqueous sample by syringe. The values of the detection limit of the method were in the range of 0.05–0.001 µg L?1, while the relative standard deviations for five replicates varied from 2.7 to 9.3%. A good linearity (0.9894 ≤ r 2 ≤ 0.9998) and a broad linear range (0.01–200 µg L?1) were obtained. The method exhibited enrichment factors ranging from 647 to 923, at room temperature. The relative standard deviations varied from 2.7 to 9.3% (n = 5). The relative recoveries of each pesticide from water samples at spiking levels of 2.00 and 10.0 µg L?1 were 88.0–111.0% and 95.8–104.1%, respectively. Finally, the proposed method was successfully utilised for the preconcentration and determination of the organochlorine pesticides in the Jajrood River water samples.  相似文献   
34.
As a new developed instrument, a portable tungsten coil electrothermal atomic absorption spectrometer (W-coil ET-AAS) was first coupled with surfactant assisted dispersive liquid–liquid microextraction (SA-DLLME) to improve its analytical performance and expand its applications in this work. SA-DLLME was very simple, rapid and the extraction efficiency was considerably improved by the effect of surfactant, which was suitable to be coupled with the portable instrument in field analysis. After SA-DLLME, concentrated chromium in organic phase was directly determined on W-coil atomiser. The influence factors relevant to SA-DLLME and instrumental conditions were studied systematically. Under the optimal conditions, the limit of detection (LOD) for Cr(VI) was 0.016 µg L?1, with sensitivity enhancement factor (EF) of 107. The relative standard deviation (RSD) for seven replicate measurements of 0.5 µg L?1 of Cr(VI) was 4.6%. The recoveries for the spiked samples were in the acceptable range of 96.8–104%. The rapid, simple and high effective method greatly improved the sensitivity of this portable spectrometer for the determination of Cr(VI) and was applied to the analysis of ultra-trace Cr(VI) in real and certified water samples with satisfactory results.  相似文献   
35.
Vortex‐assisted dispersive liquid–liquid microextraction using methyl benzoate as an alternative extraction solvent for extracting and preconcentrating three benzimidazole fungicides (i.e., carbendazim, thiabendazole, and fluberidazole) in environmental water samples before high‐performance liquid chromatographic analysis has been developed. The selected microextraction conditions were 250 μL of methyl benzoate containing 300 μL of ethanol, 1.0% w/v sodium acetate, and vortex agitation speed of 2100 rpm for 30 s. Under optimum conditions, preconcentration factors were 14.5–39.0 for the target fungicides. Limits of detection were obtained in the range of 0.01–0.05 μg/L. The proposed method was then applied to surface water samples and the recovery evaluations at three spiked concentration levels of 5, 30, and 50 μg/L were obtained in the range of 77.4–110.9% with the relative standard deviation <7.4%. The present method was simple, rapid, low cost, sensitive, environmentally friendly, and suitable for the trace analysis of the studied fungicides in environmental water samples.  相似文献   
36.
The worldwide demand for energy continues to grow and the production of heavy crude is escalating due to shortage of conventional light crude. The transportation of heavy crude oil from the head-well to the refinery is a challenging task due to its high viscosity and low API gravity. Catalytic aquathermolysis is one of the most significant and cost-effective viscosity reduction techniques employed in the up gradation of the crude oil at elevated temperatures and hence to enhance oil extraction process. In this study, catalytic aquathermolysis of Omani heavy crude oil was performed using magnetite nanoparticles (NPs). The NPs were synthesised by reverse co-precipitation method using iron salts in alkaline medium. The synthesised NPs were characterized using Scanning Electron Microscopy (SEM), X-Ray Powder Diffraction (XRD), Energy Dispersive X- Ray analysis (EDX) and Fourier Transform Infrared Spectroscopy (FTIR). The XRD results exhibited a characteristic peak confirming the high purity of iron oxide nanoparticles. The FTIR spectral analysis designated two well-defined peaks corresponding to wave numbers of 500 ?cm?1 and 630 ?cm?1, endorses the presence of Fe–O. The catalytic aquathermolysis experiments were carried out in a Parr high temperature-high pressure batch reactor at different experimental conditions. The processing parameters in temperature range of 250 ?°C - 300 ?°C, 0.1% to 0.3% catalyst loading, water to oil ratio of 1:7 to 3:7 with 24–72 ?h of reaction time. The initial pressure in the reactor was maintained at 32 ?bars and the optimization was performed using the Taguchi method to maximize the level of heavy oil. An orthogonal array was employed to analyse the effects of mean response and mean signal-to-noise ratio (S/N) to upgrade the heavy oil. The regression analysis was used to establish a relationship between the viscosity and experimental parameters. The experimental outcomes indicates that the maximum reduction in viscosity occurred at a processing temperature of 300 ?°C, 1:7 ?W/O ratio, 0.1 ?wt% of catalyst concentration and 48 ?h of reaction time. Similarly, the optimum conditions for the reduction in API gravity were obtained at 280 ?°C temperature, 3:7 ?W/O ratio, 0.2 ?wt% of catalyst concentration and a reaction time of 24 ?h.  相似文献   
37.
采用简单高温煅烧法成功制备了磁性钴镍基氮掺杂三维碳纳米管与石墨烯复合材料(CoNi@NGC),将其作为吸附剂用于水体中6种双酚类化合物(BPs)的吸附性能和机理研究。将CoNi@NGC复合纳米材料用作萃取介质,运用酸碱泡腾片的CO2强力分散作用,开发了泡腾反应强化的分散固相微萃取前处理方法,结合高效液相色谱-荧光检测(HPLC-FLD)快速定量饮料中痕量BPs。采用扫描电镜、透射电镜、傅里叶红外光谱、氮气吸脱附、X射线光电子能谱和磁滞回线等技术手段对材料形貌结构进行表征,结果显示:该吸附剂成功实现氮元素的掺杂,且具有较大的比表面积(109.42 m2/g)、丰富的孔径及较强的磁性(17.98 emu/g)。吸附剂投加量、pH、温度、时间等因子优化试验表明:当pH=7,在初始质量浓度为5 mg/L的BPs混合溶液中投加5 mg CoNi@NGC, 298 K反应5 min,对双酚M(BPM)、双酚A(BPA)的吸附率分别高达99.01%和98.21%。作用90 min时对双酚Z(BPZ)、BPA、BPM的吸附率近100%。在吸附过程中,BPs与CoNi@NGC之间的整个吸附过程主要受氢键、静电作用和π-π共轭作用共同控制。整个吸附过程符合Freundlich吸附等温线模型和准二级动力学方程,吸附自发进行。进一步将CoNi@NGC作为萃取介质制备成磁性泡腾片,利用泡腾分散微萃取技术高效富集和提取6种盒装饮料中的BPs,优化了影响富集效果的泡腾片的存在与否、洗脱剂种类、洗脱时间、洗脱体积等关键因子,在最佳萃取条件下(pH=7,投加5 mg CoNi@NGC, 2 mL丙酮洗脱6 min),结合HPLC-FLD,新开发的泡腾分散微萃取方法提供的检出限为0.06~0.20 μg/L,定量限为0.20~0.66 μg/L,日内和日间精密度分别为1.44%~4.76%和1.69%~5.36%,在实际样品中不同水平下的加标回收率为82.4%~103.7%,在桃汁中检测到BPA和双酚B(BPB)分别为2.09 μg/L和1.37 μg/L。再生试验表明该吸附材料至少可以重复使用5次以上,显著降低了分析的试验成本。与其他方法相比,该方法具有灵敏度高、萃取速度快、环境友好等优点,在常规食品污染监测中具有较强的应用价值。  相似文献   
38.
杨霄  万译文  黄华伟  索纹纹  肖维  李小玲 《色谱》2022,40(7):625-633
建立了分散固相萃取-超高效液相色谱-串联质谱法同时测定水产品中5种硝基咪唑类和6种苯二氮卓类药物残留的方法。样品用1%(v/v)氨水乙腈提取,提取液经十八烷基键合硅胶(C18)和N-丙基乙二胺(PSA)吸附剂净化,在45℃下用氮气吹至近干,用1 mL甲醇-水(1∶9,v/v)溶液复溶,过0.22μm尼龙-66滤膜后用超高效液相色谱-串联质谱测定。目标化合物采用Kinetex F5色谱柱(100 mm×3.0 mm,2.6μm)分离,以0.1%(v/v)甲酸水溶液和甲醇作为流动相进行梯度洗脱,在电喷雾离子源(ESI)、正离子扫描和多反应监测(MRM)模式下进行测定,基质匹配外标法定量。结果表明,5种硝基咪唑类和6种苯二氮卓类药物在8.5 min内完成色谱分离分析,目标物在0.5~20μg/L范围内线性关系良好,相关系数均大于0.995,检出限和定量限分别为0.2~0.5μg/kg和0.5~1.0μg/kg。以草鱼、对虾和大黄鱼为样品基质,在3个不同的添加水平下,5种硝基咪唑类和6种苯二氮卓类药物的平均回收率为73.2%~110.6%,相对标准偏差(RSD)小于15%。本研究建立的方法具有简单、快速、灵敏度高和成本低等优势,可用于水产品中5种硝基咪唑类和6种苯二氮卓类药物的快速检测。该方法的建立为我国水产品质量安全相关监管部门同时监控水产品中硝基咪唑类和苯二氮卓类药物残留提供了技术支持。  相似文献   
39.
Dispersive liquid-liquid microextraction is one of the most widely used microextraction techniques currently in the analytical chemistry field, mainly due to its simplicity and rapidity. The operational mode of this approach has been constantly changing since its introduction, adapting to new trends and applications. Most of these changes are related to the nature of the solvent employed for the microextraction. From the classical halogenated solvents (e.g., chloroform or dichloromethane), different alternatives have been proposed in order to obtain safer and non-pollutants microextraction applications. In this sense, low-density solvents, such as alkanols, switchable hydrophobicity solvents, and ionic liquids were the first and most popular replacements for halogenated solvents, which provided similar or better results than these classical dispersive liquid-liquid microextraction solvents. However, despite the good performances obtained with low-density solvents and ionic liquids, researchers have continued investigating in order to obtain even greener solvents for dispersive liquid-liquid microextraction. For that reason, in this review, the evolution over the last five years of the three types of solvents already mentioned and two of the most promising solvent alternatives (i.e., deep eutectic solvents and supramolecular solvents), have been studied in detail with the purpose of discussing which one provides the greenest alternative.  相似文献   
40.
A vortex-assisted dispersive micro-solid-phase extraction procedure using a new and green sorbent was developed as a simple, fast, and efficient sample preparation method for the extracting five pesticides in several fruit juice samples. In this study, for the first time, riboflavin was used as an efficient sorbent. A few milligrams of riboflavin was directly added into the aqueous solution containing the analytes to adsorb them. After adsorption the analytes, they were desorbed and more concentrated by a dispersive liquid–liquid microextraction procedure. The influence of several effective parameters such as amount of riboflavin, pH, vortex time, eluent nature and volume, and extraction solvent type and volume on the extraction efficiency was investigated. In optimal conditions, linear ranges of the calibration curves were broad. The limits of detection and quantification were attained in the ranges of 0.56–1.5  and 1.9–0.52 ng mL−1, respectively. The proposed method demonstrated to be suitable for concurrent extraction of the studied pesticides in various fruit juice samples with high enrichment factors (320–360) and precision (relative standard deviation ≤7.8% for intra- [n = 6] and interday [n = 4] precisions at a concentration of 25 ng mL−1 of each pesticide).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号