首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7347篇
  免费   1055篇
  国内免费   1467篇
化学   5777篇
晶体学   41篇
力学   465篇
综合类   67篇
数学   1031篇
物理学   1076篇
无线电   1412篇
  2024年   54篇
  2023年   232篇
  2022年   313篇
  2021年   444篇
  2020年   601篇
  2019年   376篇
  2018年   331篇
  2017年   325篇
  2016年   423篇
  2015年   357篇
  2014年   518篇
  2013年   657篇
  2012年   435篇
  2011年   447篇
  2010年   341篇
  2009年   383篇
  2008年   399篇
  2007年   386篇
  2006年   364篇
  2005年   320篇
  2004年   277篇
  2003年   329篇
  2002年   321篇
  2001年   191篇
  2000年   155篇
  1999年   123篇
  1998年   111篇
  1997年   78篇
  1996年   98篇
  1995年   69篇
  1994年   70篇
  1993年   49篇
  1992年   61篇
  1991年   25篇
  1990年   23篇
  1989年   19篇
  1988年   23篇
  1987年   18篇
  1986年   21篇
  1985年   31篇
  1984年   17篇
  1983年   9篇
  1982年   17篇
  1981年   8篇
  1980年   5篇
  1979年   6篇
  1977年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有9869条查询结果,搜索用时 31 毫秒
941.
The B(C6F5)3‐catalyzed silylative reduction of conjugated nitriles has been developed to afford synthetically valuable β‐silyl amines. The reaction is chemoselective and proceeds under mild conditions. Mechanistic elucidation indicates that it proceeds by rapid double hydrosilylation of the conjugated nitrile to an enamine intermediate which is subsequently reduced to the β‐silyl amine, thus forming a new C(sp3)? Si bond. Based on this mechanistic understanding, a preparative route to enamines was also established using bulky silanes.  相似文献   
942.
This study explores the kinetics, mechanism, and active sites of the CO2 electroreduction reaction (CO2RR) to syngas and hydrocarbons on a class of functionalized solid carbon‐based catalysts. Commercial carbon blacks were functionalized with nitrogen and Fe and/or Mn ions using pyrolysis and acid leaching. The resulting solid powder catalysts were found to be active and highly CO selective electrocatalysts in the electroreduction of CO2 to CO/H2 mixtures outperforming a low‐area polycrystalline gold benchmark. Unspecific with respect to the nature of the metal, CO production is believed to occur on nitrogen functionalities in competition with hydrogen evolution. Evidence is provided that sufficiently strong interaction between CO and the metal enables the protonation of CO and the formation of hydrocarbons. Our results highlight a promising new class of low‐cost, abundant electrocatalysts for synthetic fuel production from CO2.  相似文献   
943.
Reactions of triarylphosphines with fluoroantimony(III) triflates give phosphine antimony(III) complexes, which undergo spontaneous reductive elimination of fluorophosphonium cations. The resulting phosphine antimony(I) complexes catenate to give the first examples of cationic antimony bicyclic compounds, [(R3P)4Sb6]4+, featuring a bicyclo[3.1.0]hexastibine framework stabilized by four phosphine ligands. The unprecedented 14‐electron redox process illustrates the generality of the reductive catenation method.  相似文献   
944.
The lack of high‐efficient, low‐cost, and durable bifunctional electrocatalysts that act simultaneously for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is currently one of the major obstacles to commercializing the electrical rechargeability of zinc–air batteries. A nanocomposite CoO‐NiO‐NiCo bifunctional electrocatalyst supported by nitrogen‐doped multiwall carbon nanotubes (NCNT/CoO‐NiO‐NiCo) exhibits excellent activity and stability for the ORR/OER in alkaline media. More importantly, real air cathodes made from the bifunctional NCNT/CoO‐NiO‐NiCo catalysts further demonstrated superior performance to state‐of‐the‐art Pt/C or Pt/C+IrO2 catalysts in primary and rechargeable zinc–air batteries.  相似文献   
945.
We herein report a new design route to stable, heterophase photocatalysts, which function as highly dispersible conjugated polymer nanoparticles and porous monoliths under visible light in aqueous medium. They were constructed by attachment of the ionic‐liquid species 1‐alkyl‐3‐vinylimidazolium bromide onto the side chains of a photoactive polymer. The structure configuration allows not only photocatalysis in aqueous environment but also a unique self‐initiation radical cross‐linking process to transform the water‐soluble photoactive polymer into a heterophase system, either as nanoparticles or a porous monolith. High photocatalytic activity and reusability of the heterophase system were demonstrated in the degradation of organic dyes and reduction of CrVI into CrIII in water under visible‐light irradiation.  相似文献   
946.
The electric conductivity‐dependence of the number of electrons transferred during the oxygen reduction reaction is presented. Intensive properties, such as the number of electrons transferred, are difficult to be considered conductivity‐dependent. Four different perovskite oxide catalysts of different conductivities were investigated with varying carbon contents. More conductive environments surrounding active sites, achieved by more conductive catalysts (providing internal electric pathways) or higher carbon content (providing external electric pathways), resulted in higher number of electrons transferred toward more complete 4e reduction of oxygen, and also changed the rate‐determining steps from two‐step 2e process to a single‐step 1e process. Experimental evidence of the conductivity dependency was described by a microscopic ohmic polarization model based on effective potential localized nearby the active sites.  相似文献   
947.
The synthesis of highly nitrogen‐doped mesoporous carbon spheres (NMCS) is reported. The large pores of the NMCS were obtained through self‐polymerization of dopamine (DA) and spontaneous co‐assembly of diblock copolymer micelles. The resultant narrowly dispersed NMCS possess large mesopores (ca. 16 nm) and small particle sizes (ca. 200 nm). The large pores and small dimensions of the N‐heteroatom‐doped carbon spheres contribute to the mass transportation by reducing and smoothing the diffusion pathways, leading to high electrocatalytic activity.  相似文献   
948.
A ferrocene‐based ionic liquid (Fe‐IL) is used as a metal‐containing feedstock with a nitrogen‐enriched ionic liquid (N‐IL) as a compatible nitrogen content modulator to prepare a novel type of non‐precious‐metal–nitrogen–carbon (M‐N‐C) catalysts, which feature ordered mesoporous structure consisting of uniform iron oxide nanoparticles embedded into N‐enriched carbons. The catalyst Fe10@NOMC exhibits comparable catalytic activity but superior long‐term stability to 20 wt % Pt/C for ORR with four‐electron transfer pathway under alkaline conditions. Such outstanding catalytic performance is ascribed to the populated Fe (Fe3O4) and N (N2) active sites with synergetic chemical coupling as well as the ordered mesoporous structure and high surface area endowed by both the versatile precursors and the synthetic strategy, which also open new avenues for the development of M‐N‐C catalytic materials.  相似文献   
949.
Herein we present a new approach for the complete removal of CrVI species, through reduction of CrVI to CrIII, followed by adsorption of CrIII. Reduction of chromium from water is an important challenge, as CrIV is one of the most toxic substances emitted from industrial processes. Chitosan (CS) thin films were developed on plain polysulfone (PSf) and PSf/TiO2 membrane substrates by a temperature-induced technique using polyvinyl alcohol as a binder. Structure property elucidation was carried out by X-ray diffraction, microscopy, spectroscopy, contact angle measurement, and water uptake studies. The increase in hydrophilicity followed the order: PSf < PSf/TiO2 < PSf/TiO2/CS membranes. Use of this thin-film composite membrane for chromium removal was investigated with regards to the effects of light and pH. The observations reveal 100 % reduction of CrVI to CrIII through electrons and protons donated from OH and NH2 groups of the CS layer; the reduced CrIII species are adsorbed onto the CS layer via complexation to give chromium-free water.  相似文献   
950.
The effects of mechanical grinding/polishing, surface roughness, and near‐surface deformation on the electrochemical corrosion behavior of thermally treated (TT) Alloy 690 were studied in a sodium chloride solution. The X‐ray photoelectron spectroscopy and transmission electron microscopy analyses revealed that mechanical grinding/polishing can change the ratio of the elements at the surface of the as‐received Alloy 690TT specimen by removing its Cr‐rich outer layer and causing deformation at the near‐surface microstructure, something which has a direct impact on the rate of the oxygen reduction reaction (ORR), the pitting potential (Epit), and the corrosion potential (Ecorr) of Alloy 690TT. It was observed that the ratio of Cr in the surface is a significant factor that controls the rate of the ORR and the corrosion parameters such as Ecorr. Higher amounts of Cr at the surface accelerate the ORR. The near‐surface deformation shifts the Epit values towards less positive potentials. It was also found that due to the different near‐surface chemical composition of the as‐received Alloy 690TT specimen compared with the ground and the polished specimens, the surface roughness parameters do not have a regular correlation with the rate of the ORR and the values of the Ecorr and the Epit. Only the passive current density increases when the surface roughness is increased. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号