首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3446篇
  免费   304篇
  国内免费   662篇
化学   3292篇
晶体学   39篇
力学   87篇
综合类   30篇
数学   37篇
物理学   487篇
无线电   440篇
  2024年   10篇
  2023年   80篇
  2022年   161篇
  2021年   164篇
  2020年   166篇
  2019年   135篇
  2018年   98篇
  2017年   154篇
  2016年   171篇
  2015年   156篇
  2014年   185篇
  2013年   332篇
  2012年   189篇
  2011年   198篇
  2010年   194篇
  2009年   211篇
  2008年   242篇
  2007年   216篇
  2006年   229篇
  2005年   175篇
  2004年   166篇
  2003年   123篇
  2002年   104篇
  2001年   86篇
  2000年   72篇
  1999年   63篇
  1998年   61篇
  1997年   47篇
  1996年   33篇
  1995年   38篇
  1994年   25篇
  1993年   32篇
  1992年   21篇
  1991年   8篇
  1990年   9篇
  1989年   16篇
  1988年   8篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   7篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1977年   3篇
排序方式: 共有4412条查询结果,搜索用时 15 毫秒
311.
MCM-41分子筛担载纳米TiO2复合材料光催化降解罗丹明B   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法将TiO2担载在介孔MCM-41分子筛上, 制备了不同TiO2含量的系列TiO2/MCM-41复合材料, 利用X射线衍射、N2吸附、紫外-可见光谱和透射电镜等方法对其进行表征. TiO2的晶型为锐钛矿相, 复合材料的比表面积和孔体积随其中TiO2担载量(复合材料中TiO2与MCM-41的质量比)的增加而减小, TiO2的平均粒径随其担载量的增加而增大. 以罗丹明B的光催化降解为探针反应, 评价了TiO2/MCM-41复合材料的光催化降解活性. 结果表明, 在紫外光照射下, 罗丹明B在该复合材料上的光催化降解反应遵循一级反应动力学, 复合材料对罗丹明B的光催化降解活性明显高于商用TiO2 (P-25), 复合材料的光催化降解活性由复合材料的吸附能力和所含TiO2的光催化活性共同决定.  相似文献   
312.
Sulfur doped anatase TiO2 nanoparticles (3 nm−12 nm) were synthesized by the reaction of titanium tetrachloride, water and sulfuric acid with addition of 3M NaOH at room temperature. The electro-optical and photocatalytic properties of the synthesized sulfur doped TiO2 nanoparticles were studied along with Degussa commercial TiO2 particles (24 nm). The results show that band gap of TiO2 particles decreases from 3.31 to 3.25 eV and for that of commercial TiO2 to 3.2 eV when the particle sizes increased from 3 nm to 12 nm with increase in sulfur doping. The results of the photocatalytic activity under UV and sun radiation show maximum phenol conversion at the particle size of 4 nm at 4.80% S-doping. Similar results are obtained using UV energy for both phenol conversion and conversion of CO2+H2O in which formation of methanol, ethanol and proponal is observed. Production of methanol is also achieved on samples with a particle size of 8 and 12 nm and sulfur doping of 4.80% and 5.26%. For TiO2 particle of 4 nm without S doping, the production of methanol, ethanol and proponal was lower as compared to the S-doped particles. This is attributed to the combined electronic effect and band gap change, S dopant, specific surface area and the light source used.  相似文献   
313.
Polylactide (PLA) is a potential candidate for the partial replacement of petrochemical polymers because it is biodegradable and produced from annually renewable resources. Characterized by its high tensile strength, unfortunately the brittleness and rigidity limit its applicability. For a great number of applications such as packaging, fibers, films, etc., it is of high interest to formulate new PLA grades with improved flexibility and better impact properties.In order to develop PLA-based biodegradable packaging, the physico-mechanical properties of commercially available PLA should be modified using biodegradable plasticizers. To this end, PLA was melt-mixed with blends of tributyl citrate and more thermally stable low molecular weight block copolymers based on poly(d,l-lactide) and poly(ethylene glycol) of different molecular weights and topologies. The copolymers have been synthesized using a potassium based catalyst which is expected to be non toxic and were characterized by utilization of TGA, GPC and NMR techniques.The effect of the addition of up to 25 wt% plasticizer on the thermo-mechanical properties of PLA was investigated and the results were correlated with particular attention to the relationship between properties and applications.To confirm the safety of the catalyst used for the preparation of the copolymers, in vitro cytotoxicity tests have been carried out using MTS assay and the results show their biocompatibility in the presence of the fibroblast cells.Compost biodegradation experiments carried out using neat and plasticized PLA have shown that the presence of plasticizers accelerates the degradation of the PLA matrix.  相似文献   
314.
The synthesis of poly(vinyl chloride) (PVC) homopolymers and poly(vinyl chloride)-b-poly(hydroxypropyl acrylate)-b-poly(vinyl chloride) (PVC-b-PHPA-b-PVC) block copolymers via a single electron - degenerative transfer mediated living radical polymerisation was carried out on a pilot scale in industrial facilities. The thermal stability of the products was assessed conductimetrically. The block copolymers, that contained a low content of PHPA (below 12 wt.%), showed thermal stability that was approximately three times greater than that of conventional PVC. Inverse gas chromatography study of the copolymers surface showed that there was a decrease in the dispersive component and greater Lewis acidity and basicity constants were observed relative to those of PVC. The thermal stabilisation of PVC when in the presence of PHPA is explained by the interactions between its functional groups and the structures formed during the thermal degradation. The thermal stability and the surface properties of PVC-b-PHPA-b-PVC were strongly dependent on the molecular weight of the block copolymer. Lewis acid-base interaction parameters were determined and are interpreted as evidence of the PVC-b-PHPA-b-PVC compatibilising function in PVC-wood flour composites.  相似文献   
315.
Synthesis of phenol-formaldehyde resol resins using organosolv pine lignins   总被引:5,自引:0,他引:5  
Lignin was extracted from white pine sawdust by organosolv-extraction using hot-compressed ethanol-water co-solvent. The optimum conditions for extracting lignin from the pine sawdust were found to be at 180 °C with ethanol-water solvent (1:1 wt/wt), where the lignin yield attained ca. 26% with a purity of ca. 83%. The lignin under such conditions was oligomers with a broad molecular weights distribution: Mn of 537, Mw of 1150 and polydispersity of 2.14. Bio-based phenol-formaldehyde resol resins were synthesized using the resultant lignin as the replacement of petroleum-based phenol at varying ratios from 25 to 75 wt.% by condensation polymerization catalyzed by sodium hydroxide. Upon heating the lignin-phenol-formaldehyde resols could solidify with a main exothermic peak at around 150-175 °C, typical of the conventional phenolic resol resins, and a secondary peak at 135-145 °C, likely due to the exothermic reactions between the free formaldehyde with phenol or lignin to form methylophenols. The replacement of phenol with lignin at a large ratio deferred the curing process, and the introduction of lignin in the resin formula decreased the thermal stability of the resin, leading to a lowered decomposition temperature and a reduced amount of carbon residue at elevated temperatures. For practical applications, it is suggested that the replacement ratio of phenol with lignin be less than 50 wt.%. The thermal stability can however be improved by purifying the lignin feedstock before the resin synthesis.  相似文献   
316.
Poly(trimethylene terephthalate)(PTT) is an excellent fiber material.Its thermal degradation and isothermal crystalline behaviors were in this study investigated using thermogravimetric analysis(TGA),thermogravimetric analysis-Fourier transform infrared spectroscopy(TGA-FTIR) analysis,differential scanning calorimetry(DSC) and X-ray diffraction(XRD).The thermal degradation mechanism of PTT follows Mclafferty rearrangement principle.The PTTwithintrinsicviscosity(Ⅳ) of 0.74 dL/g has a maximum crystallinity...  相似文献   
317.
A continuous flow reactor was operated at atmospheric pressure and feed rate of 0–1.5 kg h−1 for degradation of PE, PP and PS in presence of 1–2 wt% PVC. The degradation temperatures were between 360 and 440 °C depending on the feeding material. The influence of PVC, temperature and silica-alumina catalysts on degradation behavior and on the properties of the products was studied and discussed. Different effects were observed for binary PE/PVC, PP/PVC, PS/PVC and complex PE/PP/PS/PVC mixtures due to specific interactions between PVC and each hydrocarbon polyolefin. Silica-alumina catalysts decreased the Cl concentration in oils but it seems to generate high amounts of Cl-containing organic compounds in gases.  相似文献   
318.
Anatase mesostructured TiO2 nanocrystalline was prepared in a mixture of 1-butyl-3-methyl-imidazolium tetrafluoroborate (BMIM+BF4) ionic liquid and water by a low temperature hydrothermal method. The obtained materials were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and N2 adsorption–desorption. The existence of BMIM+BF4 enhanced the polycondensation and crystallization rate, which encouraged the formation of anatase crystal. The TiO2 particles were thermally very stable and thus resistant to anatase-rutile phase transformation during calcination at high temperatures. The anatase TiO2 showed high photocatalytic activity in the degradation of p-chlorophenol than that of the commercially available TiO2, Degussa P25. After 2 h reaction under the UV-irradiation of 250 W, the removing rate of p-chlorophenol was up to 96.3%.  相似文献   
319.
General purpose poly(styrene) prepared by conventional radical techniques contains a head-to-head unit as a consequence of polymerization termination by radical coupling. As has been previously demonstrated, thermal stress promotes homolysis of the bond linking the head-to-head components. The macroradicals generated depolymerize rapidly to generate styrene monomer. This decomposition during processing can lead to finished articles containing objectionable levels of styrene monomer, particularly for food packaging applications in which even low levels of monomer can promote objectionable taste and aroma. Polymer containing no head-to-head units should not be prone to this facile decomposition. In this instance, poly(styrene) has been prepared by nitroxyl-mediated polymerization of styrene monomer followed by reductive removal of nitroxyl end groups. Polymer prepared in this manner contains no head-to-head units and displays thermal stability much greater than that observed for conventional poly(styrene). A direct comparison of the stability for the two polymers is readily available by thermogravimetric techniques. A quantitative reflection of the difference in stability is available from the rate constants for the respective decomposition.  相似文献   
320.
Recently, the existence of a relation between the rupture of 1,4-β-glycosidic bonds in the cellulose during thermal-ageing of paper/oil systems and the detection of methanol in the oil has been reported for the first time in this journal (Jalbert et al. 2007). The present study addresses the rate constants of the reaction for standard wood kraft papers, two immersed in inhibited naphthenic oil under air (paper/oil weight–volume ratio of 1:18) and one in non-inhibited paraffinic oil under nitrogen (paper/oil weight–volume ratio of 1:30). The isotherms in the range of 60–130 °C show that the initial rate of methanol production markedly increases with temperature and to a lesser extent with the moisture of the specimens (initially between 0.5 and 2.25% (w/w)), similarly to what is noted for the depolymerization through the Ekenstam’s pseudo-zero order model. The Arrhenius expression of the rate constants reveals linear relationships that confirm the dominance of a given mechanism in both cases. A very good agreement is also noted for the activation energy over the entirely paper/oil systems studied (106.9 ± 4.3 and 103.5 ± 3.7 kJ mol?1 for methanol and scissions, respectively). Furthermore, a comparison of the rate constants $ \left( {k_{{{\text{CH}}_{ 3} {\text{OH}}}} /k_{\text{scissions}} } \right) Recently, the existence of a relation between the rupture of 1,4-β-glycosidic bonds in the cellulose during thermal-ageing of paper/oil systems and the detection of methanol in the oil has been reported for the first time in this journal (Jalbert et al. 2007). The present study addresses the rate constants of the reaction for standard wood kraft papers, two immersed in inhibited naphthenic oil under air (paper/oil weight–volume ratio of 1:18) and one in non-inhibited paraffinic oil under nitrogen (paper/oil weight–volume ratio of 1:30). The isotherms in the range of 60–130 °C show that the initial rate of methanol production markedly increases with temperature and to a lesser extent with the moisture of the specimens (initially between 0.5 and 2.25% (w/w)), similarly to what is noted for the depolymerization through the Ekenstam’s pseudo-zero order model. The Arrhenius expression of the rate constants reveals linear relationships that confirm the dominance of a given mechanism in both cases. A very good agreement is also noted for the activation energy over the entirely paper/oil systems studied (106.9 ± 4.3 and 103.5 ± 3.7 kJ mol−1 for methanol and scissions, respectively). Furthermore, a comparison of the rate constants shows approximately constant values indicating an apparent yield for the methanol of about one-third molecule per every scission for the tests under air (0.27 ± 0.04 for Clupak HD75 and 0.37 ± 0.14 for Munksj? TH70) and even lower for the ones under N2 (0.12 ± 0.03 for Munksj? E.G.). As expected from a pseudo-zero order model, these values were shown to be consistent with a similar comparison of the amount of CH3OH and chain-end groups produced under specific time–temperature ageing conditions (168 h at 120 °C). Finally, an additional test carried out with unaged cellulose in contact with a fresh solution of methanol in oil (cellulose/oil weight–volume ratio of 1:18) shows that at equilibrium, over 58% of the species is lost from the solution due to penetration into the fibres. Such results reveal the importance of the species partitioning in establishing the true correspondence between the molecules of CH3OH produced and the scissions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号