首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11342篇
  免费   1536篇
  国内免费   854篇
化学   2195篇
晶体学   118篇
力学   972篇
综合类   174篇
数学   2427篇
物理学   2826篇
无线电   5020篇
  2024年   38篇
  2023年   132篇
  2022年   255篇
  2021年   316篇
  2020年   365篇
  2019年   281篇
  2018年   309篇
  2017年   407篇
  2016年   473篇
  2015年   494篇
  2014年   721篇
  2013年   879篇
  2012年   750篇
  2011年   747篇
  2010年   637篇
  2009年   711篇
  2008年   729篇
  2007年   691篇
  2006年   627篇
  2005年   590篇
  2004年   463篇
  2003年   447篇
  2002年   360篇
  2001年   325篇
  2000年   313篇
  1999年   252篇
  1998年   199篇
  1997年   208篇
  1996年   189篇
  1995年   191篇
  1994年   96篇
  1993年   89篇
  1992年   84篇
  1991年   52篇
  1990年   63篇
  1989年   47篇
  1988年   40篇
  1987年   21篇
  1986年   19篇
  1985年   28篇
  1984年   29篇
  1983年   5篇
  1982年   17篇
  1981年   13篇
  1980年   3篇
  1979年   9篇
  1978年   3篇
  1977年   3篇
  1975年   3篇
  1957年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
112.
Summary.  Thermal one- and two-bond dissociation processes of cis- and trans-azomethane were studied by ab initio computation with DZP and TZ2P basis sets, using the d(N–C) bond lengths as the reaction coordinates. The geometries were optimized at the MP2 level, and the dissociation energies obtained exploiting a single-point, fourth-order M?ller–Plesset calculations [MP4SDTQ/TZ2P]. At this level of theory including zero-point energies, the trans-isomer is by 9.3 kcal/mol more stable than the cis-isomer. The results show that the energetically more favourable one-bond cleavage proceeds without transition state with the predicted bond dissociation energy D 0 of 47.8 kcal/mol for trans-azomethane and 38.5 kcal/mol for cis-azomethane. With calculated barrier heights the unimolecular dissociation rate constants have been determined by means of the RRKM theory. The second-order saddle points localized for synchronous decomposition pathways lie 13 (trans)-23(cis) kcal/mol above the one-bond dissociation energies [MP2/DZP]. Received May 28, 1996/Final version received November 1, 1996 / Accepted November 1, 1996  相似文献   
113.
In order to extract antioxidant phenolic compounds from spent grain (SG) two extraction methods were studied: the ultrasound-assisted method (US) and the Ultra-Turrax method (high stirring rate) (UT). Liquid to solid ratios, solvent concentration, time, and temperature/stirring rate were optimized. Spent grain extracts were analyzed for their total phenol content (TPC) (0.62 to 1.76 mg GAE/g SG DW for Ultra-Turrax pretreatment, and 0.57 to 2.11 mg GAE/g SG DW for ultrasound-assisted pretreatment), total flavonoid content (TFC) (0.6 to 1.67 mg QE/g SG DW for UT, and 0.5 to 1.63 mg QE/g SG DW for US), and antioxidant activity was measured using 2,2-diphenyl-2-picrylhydrazyl (DPPH) free radical (25.88% to 79.58% for UT, and 27.49% to 78.30% for UT). TPC was greater at a high stirring rate and high exposure time up to a certain extent for the Ultra-Turrax method, and at a high temperature for the ultrasound-assisted method. P-coumaric acid (20.4 ± 1.72 mg/100 SG DW for UT, and 14.0 ± 1.14 mg/100 SG DW for US) accounted for the majority of the phenolic found compounds, followed by rosmarinic (6.5 ± 0.96 mg/100 SG DW for UT, and 4.0 ± 0.76 mg/100 SG DW for US), chlorogenic (5.4 ± 1.1 mg/100 SG DW for UT, and non-detectable for US), and vanillic acids (3.1 ± 0.8 mg/100 SG DW for UT, and 10.0 ± 1.03 mg/100 SG DW for US) were found in lower quantities. Protocatechuic (0.7 ± 0.05 mg/100 SG DW for UT, and non-detectable for US), 4-hydroxy benzoic (1.1 ± 0.06 mg/100 SG DW for UT, and non-detectable for US), and caffeic acids (0.7 ± 0.03 mg/100 SG DW for UT, and non-detectable for US) were present in very small amounts. Ultrasound-assisted and Ultra-Turrax pretreatments were demonstrated to be efficient methods to recover these value-added compounds.  相似文献   
114.
The electrodeposition of silver on Au(111) was investigated using lateral force microscopy (LFM) in Ag+ containing sulfuric acid. Friction force images show that adsorbed sulfate forms structure ( on Au(111) prior to Ag underpotential deposition (UPD) and structure ( ) on a complete monolayer or bilayer of Ag. Variation of friction with normal load shows a non-monotonous dependence, which is caused by increasing penetration of the tip into the sulfate adlayer. In addition, the friction force is influenced by the varying coverage and mobility of Ag atoms on the surface. Before Ag coverage reaches the critical value, the deposited silver atoms may be mobile enough to be dragged by the movement of AFM tip. Possible penetration of the tip into the UPD layer at very high loads is discussed as a model for self-healing wear. However, when the coverage of Ag is close to 1, the deposited Ag atoms are tight enough to resist the influence of the AFM tip and the tip penetrates only into the sulfate adlayer.  相似文献   
115.
Moment analysis method using partial filling CE was developed for the kinetic study on solute permeation at the interface of spherical molecular aggregates. Moment equations for partial filling CE were developed by classifying CE systems into five categories according to the migration velocities of solute and molecular aggregate. The method was applied to the study on the dissolution of electrically neutral solutes into SDS micelles. Elution peaks were measured by partial filling CE while changing the concentration of SDS and the filling ratio of SDS micellar zone to the capillary (ϕM). Partition equilibrium constants (Kp) and rate constants of interfacial solute permeation of SDS micelles (kin and kout) were determined from the first absolute and second central moments of the elution peaks by using the moment equations. Their values were comparable irrespective of ϕM and were almost the same as those previously measured by complete filling CE. The positive correlation of Kp with the hydrophobicity of the solutes was explained in terms of the change in kin and kout. It was demonstrated that the moment analysis method using partial filling CE is effective for studying solute permeation kinetics at the interface of spherical molecular aggregates.  相似文献   
116.
Instrumented indentation tests using both constant loading rate (CLR) and continuous stiffness measurement (CSM) operation modes were performed to investigate the deformation mechanism and their sensitivity to the deformation rate in semi-crystalline polymers through the quantitative analysis of load-depth loading and unloading curves. The strain rate was constant during the CSM tests, while the strain rate decreased with the increasing of loading time in CLR tests. The mechanical response mechanism of the semi-crystalline polymers to these tests was very complicated because of the combined effects of strain-hardening in the crystal phase and strain-softening in the amorphous phase. Results show that the loading index m reflects the strain-hardening or strain-softening response during indentation. When m > 2, the mechanical response was due to the strain-hardening, and when m < 2, the response was due to strain-softening. A method based on the measured contact hardness was proposed to obtain the unloading stiffness, and the other mechanical parameters could then be determined according to the unloading stiffness.  相似文献   
117.
This study evaluates the kinetic hydrate inhibition (KHI) performance of four quaternary ammonium hydroxides (QAH) on mixed CH4 + CO2 hydrate systems. The studied QAHs are; tetraethylammonium hydroxide (TEAOH), tetrabutylammonium hydroxide (TBAOH), tetramethylammonium hydroxide (TMAOH), and tetrapropylammonium hydroxide (TPrAOH). The test was performed in a high-pressure hydrate reactor at temperatures of 274.0 K and 277.0 K, and a concentration of 1 wt.% using the isochoric cooling method. The kinetics results suggest that all the QAHs potentially delayed mixed CH4 + CO2 hydrates formation due to their steric hindrance abilities. The presence of QAHs reduced hydrate formation risk than the conventional hydrate inhibitor, PVP, at higher subcooling conditions. The findings indicate that increasing QAHs alkyl chain lengths increase their kinetic hydrate inhibition efficacies due to better surface adsorption abilities. QAHs with longer chain lengths have lesser amounts of solute particles to prevent hydrate formation. The outcomes of this study contribute significantly to current efforts to control gas hydrate formation in offshore petroleum pipelines.  相似文献   
118.
Dinitraminic acid (HN(NO2)2, HDN) was prepared by ion exchange chromatography and acid-base reaction with basic copper(II) carbonate allowed the in situ preparation of copper(II) dinitramide, which was reacted with twelve nitrogen-rich ligands, for example, 4-amino-1,2,4-triazole, 1-methyl-5H-tetrazole, di(5H-tetrazolyl)-methane/-ethane/-propane/-butane. Nine of the complexes were investigated by low-temperature X-ray diffraction. In addition, all compounds were investigated by infrared spectroscopy (IR), differential thermal analysis (DTA), elemental analysis (EA) and thermogravimetric analysis (TGA) for selected compounds. Furthermore, investigations of the materials were carried out regarding their sensitivity toward impact (IS), friction (FS), ball drop impact (BDIS) and electrostatic discharge (ESD). In addition, hot plate and hot needle tests were performed. Complex [Cu(AMT)4(H2O)](DN)2, based on 1-amino-5-methyltetrazole (AMT), is most outstanding for its detonative behavior and thus also capable of initiating PETN in classical initiation experiments. Laser ignition experiments at a wavelength of 915 nm were performed for all substances and solid-state UV-Vis spectra were recorded to apprehend the ignition mechanism.  相似文献   
119.
《印度化学会志》2021,98(10):100171
The higher wear resistance of Ni based nano composite coatings makes them potential replacement in protecting the substrate materials. The role of surface roughness of the coating along with wear parameters on the specific wear rate, pin temperature, and COF are addressed in the present study. The use of hard nano Al2O3 particles found significant role in increasing the resistance to wear for Ni matrix coatings on Al6061 material. The resistance to dislocation offered by these nano Al2O3 particles and smear out of debris with plastic deformation indicated abrasive and adhesive nature of wear mechanism in combination. The optimization of wear parameters are carried out by surface response method based grey relation analysis. The normal load applied onto the pin has significant influence on the specific wear rate and temperature rise in the pin. The surface roughness of the coating has also found instrumental in the higher pin temperature and friction coefficient.  相似文献   
120.
The ring-polymer molecular dynamics (RPMD) was used to calculate the thermal rate coefficients and kinetic isotope effects of the heavy-light-heavy abstract reaction Cl+XCl\begin{document}$ \rightarrow $\end{document}XCl+Cl (X = H, D, Mu). For the Cl+HCl reaction, the excellent agreement between the RPMD and experimental values provides a strong proof for the accuracy of the RPMD theory. And the RPMD results are also consistent with results from other theoretical methods including improved-canonical-variational-theory and quantum dynamics. The most novel finding is that there is a double peak in Cl+MuCl reaction near the transition state, leaving a free energy well. It comes from the mode softening of the reaction system at the peak of the potential energy surface. Such an explicit free energy well suggests strongly there is an observable resonance. And for the Cl+DCl reaction, the RPMD rate coefficient again gives very accurate results compared with experimental values. The only exception is at the temperature of 312.5 K, results from RPMD and all other theoretical methods are close to each other but slightly lower than the experimental value, which indicates experimental or potential energy surface deficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号