首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25096篇
  免费   3288篇
  国内免费   1783篇
化学   10198篇
晶体学   356篇
力学   1834篇
综合类   163篇
数学   1473篇
物理学   10436篇
无线电   5707篇
  2025年   107篇
  2024年   658篇
  2023年   644篇
  2022年   717篇
  2021年   1048篇
  2020年   1278篇
  2019年   1083篇
  2018年   845篇
  2017年   963篇
  2016年   1084篇
  2015年   1036篇
  2014年   1406篇
  2013年   1773篇
  2012年   1388篇
  2011年   1471篇
  2010年   1220篇
  2009年   1364篇
  2008年   1390篇
  2007年   1352篇
  2006年   1309篇
  2005年   1053篇
  2004年   917篇
  2003年   863篇
  2002年   708篇
  2001年   627篇
  2000年   581篇
  1999年   507篇
  1998年   445篇
  1997年   357篇
  1996年   301篇
  1995年   252篇
  1994年   218篇
  1993年   169篇
  1992年   138篇
  1991年   143篇
  1990年   96篇
  1989年   93篇
  1988年   83篇
  1987年   64篇
  1986年   61篇
  1985年   58篇
  1984年   41篇
  1983年   24篇
  1982年   38篇
  1981年   36篇
  1980年   32篇
  1979年   31篇
  1978年   16篇
  1977年   23篇
  1974年   12篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
    
We use an m-vicinity method to examine Ising models on hypercube lattices of high dimensions d3. This method is applicable for both short-range and long-range interactions. We introduce a small parameter, which determines whether the method can be used when calculating the free energy. When we account for interaction with the nearest neighbors only, the value of this parameter depends on the dimension of the lattice d. We obtain an expression for the critical temperature in terms of the interaction constants that is in a good agreement with the results of computer simulations. For d=5,6,7, our theoretical estimates match the numerical results both qualitatively and quantitatively. For d=3,4, our method is sufficiently accurate for the calculation of the critical temperatures; however, it predicts a finite jump of the heat capacity at the critical point. In the case of the three-dimensional lattice (d=3), this contradicts the commonly accepted ideas of the type of the singularity at the critical point. For the four-dimensional lattice (d=4), the character of the singularity is under current discussion. For the dimensions d=1, 2 the m-vicinity method is not applicable.  相似文献   
992.
    
The effect of suprathermal polarization force on both linear and weakly nonlinear dust-acoustic solitary structures in a three-component dusty plasma is investigated. For this purpose, a new expression of the polarization force acting on dust particles that include the electronic suprathermal effect is derived. The results are applied to two different experimental dusty plasmas. We have found that the polarization force acting on the dust grains decreases as the electron suprathermality becomes more significant. In addition, we have shown that, for a given value of the spectral index κ , the polarization force magnitude fluctuates from one plasma to another. The changes arising in the propagation of small-amplitude dust-acoustic (DA) solitons due to the presence of this suprathermal polarization force are also analysed. Interestingly, an increase in the magnitude of the polarization force leads to an increase in the amplitude and width of DA soliton and provides more energy to the motion of this soliton.  相似文献   
993.
    
The energetic study of 2‐aminobenzoxazole (ABO) and 2‐methyl‐6‐nitrobenzoxazole (MNBO) has been developed using experimental and computational tools. The enthalpies of combustion, of fusion, and of sublimation of these compounds were measured by static‐bomb combustion calorimetry, differential scanning calorimetry, and Calvet microcalorimetry drop‐technique and/or the Knudsen‐effusion method. Additionally, we calculated the gas‐phase standard molar enthalpies of formation of these compounds, as well as of 2‐methyl‐6‐nitrobenzothiazole (MNBT), through high level ab initio calculations, at the G3(MP2)//B3LYP level of theory. Furthermore, the energetic effects associated with the presence of the amino and nitro groups on the core of benzoxazole or benzothiazole molecules were also evaluated, as well as stabilizing electronic interactions occurring in the molecules. The latter were investigated through Natural Bonding Orbital (NBO) of the corresponding wave functions. Finally, the thermodynamic stability of the titled compounds was evaluated and a comparison with their sulfur heteroanalogs was achieved. In the gaseous phase, the oxygen derivatives exhibit the lowest tendency to decompose into their constituent elements at standard conditions.  相似文献   
994.
    
An amorphous cobalt boride alloy with high electronic conductivity is fabricated through the liquid-phase reduction method. Benefiting from large specific surface area and hierarchical pore structure, the as-synthesized Co-B nanoflakes expose substantial electrochemical active sites, promote the transfer of electrons and ions, and accelerate the redox kinetic process. The as-obtained amorphous Co-B alloy sample displays a specific capacitance of 411 F g−1 at 0.5 A g−1, and with the current density increased to 10 A g−1, it maintains 69% of the initial capacitance. The as-assembled asymmetric supercapacitor device reveals electrochemical properties comprising an excellent specific capacitance of 64.3 F g−1 at 0.25 A g−1, superior cyclical stability of 105% after 20,000 cycles at 3 A g−1, and maximum energy density of 22.9 Wh kg−1 at a power density of 200.3 W kg−1. This study demonstrates great potential in developing high-conductivity materials for an asymmetric supercapacitor through utilizing an amorphous cobalt boride alloy as a promising electrode material.  相似文献   
995.
    
Carbon dots (CDs) are emerging photoluminescent materials with excellent optical properties. However, the lack of active sites in primitive CDs has limited their development applications. Herein, functionalized carbon dots (Z-CDs) are successfully prepared by surface modification of CDs with mono (6-amino-6-deoxy) cyclodextrin (β-CD). The introduction of β-CD increases the spatial potential resistance between CDs, which effectively reduces the self-quenching effect. Moreover, the conjugated domains of Z-CDs are expanded, which improves the optical properties with a quantum yield of 48.74%. Z-CDs are able to be used in the sequential detection of morin and Al3+, and the fluorescence mechanisms are confirmed to be internal filtration effect and fluorescence resonance energy transfer, respectively. The limits of detection are 0.817 and 0.231 × 10−6 m . This study not only provides an idea to solve the problem of self-quenching of CDs but also enriches the detection means of flavonoids and ions, which is expected to be applied to biosensing and environmental monitoring.  相似文献   
996.
方莹 《电子测试》2020,(10):133-134
为了促进新能源的充分利用,解决能源需求量大问题,借助电力电子技术,对非电力能源有效转化,促进不同资源的电力转化能力,在本文中笔者就电力电子技术在新能源领域中的应用进行探究  相似文献   
997.
    
In this work, we devote to explore excited‐state intramolecular proton transfer (ESIPT) behavior for a novel fluorescent molecule naphthalimide‐based 2‐(2‐hydroxyphenyl)‐benzothiazole (HNIBT) [New J. Chem. 2019, 43, 9152.] in toluene and methanol (MeOH) solvents. Exploring weak interactions, stable HNIBT‐enol, and HNIBT‐MeOH‐enol complex can be found in S0 state via TDDFT/B3LYP/6‐311+G(d,p) level. Given photoexcitation, intramolecular hydrogen bond O1? H2···N3 of HNIBT‐enol and HNIBT‐MeOH‐enol is dramatically enhanced, which offers impetus for facilitates ESIPT reaction. After repeated comparisons, we verify the unavailability of intermolecular hydrogen bonding effects between HNIBT‐enol and MeOH molecules. In view of excitation, HOMO (π) → LUMO (π*) transition and the changes of electronical densities indeed impulse ESIPT tendency. Via constructing potential energy curves (PECs), for both HNIBT‐enol and HNIBT‐MeOH‐enol complex, the ESIPT could only occur along with intramolecular hydrogen bond O1? H2···N3. Through comparison, the potential barrier falls from 4.124 kcal/mol (HNIBT‐enol) to 2.132 kcal/mol (HNIBT‐MeOH‐enol). Therefore, we confirm that the ESIPT of the HNIBT system happens more easily in the MeOH solvent compared with the toluene solvent.  相似文献   
998.
    
《印度化学会志》2021,98(9):100114
We demonstrate how a back-propagation artificial neural network can be trained to represent a potential energy surface (PES) in a formless manner with limited data points and exploited to predict interaction energies for configurations not included in the training set. A similar exercise is undertaken for predicting the eigenvalues and eigenvectors of a model Hamiltonian matrix that delicately depends on parameters and exhibits crossing of eigen values.  相似文献   
999.
    
The intercalation of cations into layered-structure electrode materials has long been studied in depth for energy storage applications. In particular, Li+-, Na+-, and K+-based cation transport in energy storage devices such as batteries and electrochemical capacitors is closely related to the capacitance behavior. We have exploited different sizes of cations from aqueous salt electrolytes intercalating into a layered Nb2CTx electrode in a supercapacitor for the first time. As a result, we have demonstrated that capacitive performance was dependent on cation intercalation behavior. The interlayer spacing expansion of the electrode material can be observed in Li2SO4, Na2SO4, and K2SO4 electrolytes with d-spacing. Additionally, our results showed that the Nb2CTx electrode exhibited higher electrochemical performance in the presence of Li2SO4 than in that of Na2SO4 and K2SO4. This is partly because the smaller-sized Li+ transports quickly and intercalates between the layers of Nb2CTx easily. Poor ion transport in the Na2SO4 electrolyte limited the electrode capacitance and presented the lowest electrochemical performance, although the cation radius follows Li+>Na+>K+. Our experimental studies provide direct evidence for the intercalation mechanism of Li+, Na+, and K+ on the 2D layered Nb2CTx electrode, which provides a new path for exploring the relationship between intercalated cations and other MXene electrodes.  相似文献   
1000.
We present a computational analysis of hexaphenylethane derivatives with heavier tetrels comprising the central bond. In stark contrast to parent hexaphenylethane, the heavier tetrel derivatives can readily be prepared. In order to determine the origin of their apparent thermodynamic stability against dissociation as compared to the carbon case, we employed local energy decomposition analysis (LED) and symmetry-adapted perturbation theory (SAPT) at the DLPNO-CCSD(T)/def2-TZVP and sSAPT0/def2-TZVP levels of theory. We identified London dispersion (LD) interactions as the decisive factor for the molecular stability of heavier tetrel derivatives. This stability is made possible owing to the longer (than C−C) central bonds that move the phenyl groups out of the heavily repulsive regime so they can optimally benefit from LD interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号