首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5236篇
  免费   645篇
  国内免费   254篇
化学   226篇
晶体学   10篇
力学   293篇
综合类   48篇
数学   2249篇
物理学   1188篇
无线电   2121篇
  2024年   6篇
  2023年   52篇
  2022年   77篇
  2021年   102篇
  2020年   121篇
  2019年   123篇
  2018年   127篇
  2017年   165篇
  2016年   190篇
  2015年   169篇
  2014年   315篇
  2013年   354篇
  2012年   272篇
  2011年   371篇
  2010年   337篇
  2009年   285篇
  2008年   326篇
  2007年   384篇
  2006年   283篇
  2005年   278篇
  2004年   267篇
  2003年   228篇
  2002年   173篇
  2001年   153篇
  2000年   143篇
  1999年   130篇
  1998年   100篇
  1997年   91篇
  1996年   55篇
  1995年   71篇
  1994年   54篇
  1993年   38篇
  1992年   41篇
  1991年   34篇
  1990年   22篇
  1989年   21篇
  1988年   20篇
  1987年   23篇
  1986年   10篇
  1985年   24篇
  1984年   16篇
  1983年   12篇
  1982年   9篇
  1981年   11篇
  1980年   11篇
  1979年   9篇
  1978年   6篇
  1977年   7篇
  1976年   5篇
  1975年   4篇
排序方式: 共有6135条查询结果,搜索用时 15 毫秒
131.
NIFTy , “Numerical Information Field Theory,” is a software framework designed to ease the development and implementation of field inference algorithms. Field equations are formulated independently of the underlying spatial geometry allowing the user to focus on the algorithmic design. Under the hood, NIFTy ensures that the discretization of the implemented equations is consistent. This enables the user to prototype an algorithm rapidly in 1D and then apply it to high‐dimensional real‐world problems. This paper introduces NIFTy  3, a major upgrade to the original NIFTy  framework. NIFTy  3 allows the user to run inference algorithms on massively parallel high performance computing clusters without changing the implementation of the field equations. It supports n‐dimensional Cartesian spaces, spherical spaces, power spaces, and product spaces as well as transforms to their harmonic counterparts. Furthermore, NIFTy  3 is able to handle non‐scalar fields, such as vector or tensor fields. The functionality and performance of the software package is demonstrated with example code, which implements a mock inference inspired by a real‐world algorithm from the realm of information field theory. NIFTy  3 is open‐source software available under the GNU General Public License v3 (GPL‐3) at https://gitlab.mpcdf.mpg.de/ift/NIFTy/tree/NIFTy_3 .  相似文献   
132.
133.
134.
Fair bandwidth allocation (FBA) has been studied in optical burst switching (OBS) networks, with the main idea being to map the max-min fairness in traditional IP networks to the fair-loss probability in OBS networks. This approach has proven to be fair in terms of the bandwidth allocation for differential connections, but the use of the ErlangB formula to calculate the theoretical loss probability has made this approach applicable only to Poisson flows. Furthermore, it is necessary to have a reasonable fairness measure to evaluate FBA models. This article proposes an approach involving throughput-based-FBA, called TFBA, and recommends a new fairness measure that is based on the ratio of the actual throughput to the allocated bandwidth. An analytical model for the performance of the output link with TFBA is also proposed.  相似文献   
135.
In this paper, we address the problem of approximating the probability density function of the following random logistic differential equation: P(t,ω)=A(t,ω)(1?P(t,ω))P(t,ω), t∈[t0,T], P(t0,ω)=P0(ω), where ω is any outcome in the sample space Ω. In the recent contribution [Cortés, JC, et al. Commun Nonlinear Sci Numer Simulat 2019; 72: 121–138], the authors imposed conditions on the diffusion coefficient A(t) and on the initial condition P0 to approximate the density function f1(p,t) of P(t): A(t) is expressed as a Karhunen–Loève expansion with absolutely continuous random coefficients that have certain growth and are independent of the absolutely continuous random variable P0, and the density of P0, , is Lipschitz on (0,1). In this article, we tackle the problem in a different manner, by using probability tools that allow the hypotheses to be less restrictive. We only suppose that A(t) is expanded on L2([t0,T]×Ω), so that we include other expansions such as random power series. We only require absolute continuity for P0, so that A(t) may be discrete or singular, due to a modified version of the random variable transformation technique. For , only almost everywhere continuity and boundedness on (0,1) are needed. We construct an approximating sequence of density functions in terms of expectations that tends to f1(p,t) pointwise. Numerical examples illustrate our theoretical results.  相似文献   
136.
137.
We discuss the motion of substance in a channel containing nodes of a network. Each node of the channel can exchange substance with: (i) neighboring nodes of the channel, (ii) network nodes which do not belong to the channel, and (iii) environment of the network. The new point in this study is that we assume possibility for exchange of substance among flows of substance between nodes of the channel and: (i) nodes that belong to the network but do not belong to the channel and (ii) environment of the network. This leads to an extension of the model of motion of substance and the extended model contains previous models as particular cases. We use a discrete-time model of motion of substance and consider a stationary regime of motion of substance in a channel containing a finite number of nodes. As results of the study, we obtain a class of probability distributions connected to the amount of substance in nodes of the channel. We prove that the obtained class of distributions contains all truncated discrete probability distributions of discrete random variable ω which can take values 0,1,,N. Theory for the case of a channel containing infinite number of nodes is presented in Appendix A. The continuous version of the discussed discrete probability distributions is described in Appendix B. The discussed extended model and obtained results can be used for the study of phenomena that can be modeled by flows in networks: motion of resources, traffic flows, motion of migrants, etc.  相似文献   
138.
Pauling described metallic bonds using resonance. The maximum probability domains in the Kronig–Penney model can show a picture of it. When the walls are opaque (and the band gap is large) the maximum probability domain for an electron pair essentially corresponds to the region between the walls: the electron pairs are localized within two consecutive walls. However, when the walls become transparent (and the band gaps closes), the maximum probability domain can be moved through the system without a significant loss in probability.  相似文献   
139.
Electrochemical blocking is a type of single-entity electrochemical measurement particularly well adapted to the detection of insulating particles. The digital detection of ultralow concentrations of artificial entities such as polymer particles or biotargets such as proteins and bacteria represents an exceptional opportunity for sensing applications. In this review, we explore the latest development in the field of electrochemical blocking and propose some perspectives.  相似文献   
140.
Multistrain diseases, which are infected through individual contacts, pose severe public health threat nowadays. In this paper, we build competitive and mutative two‐strain edge‐based compartmental models using probability generation function (PGF) and pair approximation (PA). Both of them are ordinary differential equations. Their basic reproduction numbers and final size formulas are explicitly derived. We show that the formula gives a unique positive final epidemic size when the reproduction number is larger than unity. We further consider competitive and mutative multistrain diseases spreading models and compute their basic reproduction numbers. We perform numerical simulations that show some dynamical properties of the competitive and mutative two‐strain models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号