首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   29篇
  国内免费   13篇
化学   12篇
力学   1篇
数学   1篇
物理学   120篇
无线电   46篇
  2024年   2篇
  2023年   4篇
  2022年   6篇
  2021年   6篇
  2020年   8篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   10篇
  2012年   6篇
  2011年   6篇
  2010年   7篇
  2009年   6篇
  2008年   9篇
  2007年   9篇
  2006年   8篇
  2005年   8篇
  2004年   9篇
  2003年   10篇
  2002年   16篇
  2001年   7篇
  2000年   14篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1990年   1篇
排序方式: 共有180条查询结果,搜索用时 0 毫秒
111.
吴凡  王太宏 《物理学报》2003,52(3):696-702
介绍了单电子泵的工作原理,讨论了如何利用库仑阻塞和单电子隧穿实现对单电子泵中单个电子运动的控制,从而给出它的相图,并由此得到了单电子泵的一个重要用途,即控制微小电流.指出栅极可能引入的随机电荷对单电子泵的应用并无影响. 关键词: 单电子泵 库仑阻塞 相图  相似文献   
112.
The entropy of a system gives a powerful insight into its microscopic degrees of freedom; however, standard experimental ways of measuring entropy through heat capacity are hard to apply to nanoscale systems, as they require the measurement of increasingly small amounts of heat. Two alternative entropy measurement methods have been recently proposed for nanodevices: through charge balance measurements and transport properties. We describe a self-consistent thermodynamic framework for applying thermodynamic relations to few-electron nanodevices—small systems, where fluctuations in particle number are significant, whilst highlighting several ongoing misconceptions. We derive a relation (a consequence of a Maxwell relation for small systems), which describes both existing entropy measurement methods as special cases, while also allowing the experimentalist to probe the intermediate regime between them. Finally, we independently prove the applicability of our framework in systems with complex microscopic dynamics—those with many excited states of various degeneracies—from microscopic considerations.  相似文献   
113.
熊永臣  王为忠  杨俊涛  黄海铭 《中国物理 B》2015,24(2):27501-027501
The quantum phase transition and the electronic transport in a triangular quantum dot system are investigated using the numerical renormalization group method.We concentrate on the interplay between the interdot capacitive coupling V and the interdot tunnel coupling t.For small t,three dots form a local spin doublet.As t increases,due to the competition between V and t,there exist two first-order transitions with phase sequence spin-doublet-magnetic frustration phase-orbital spin singlet.When t is absent,the evolutions of the total charge on the dots and the linear conductance are of the typical Coulomb-blockade features with increasing gate voltage.While for sufficient t,the antiferromagnetic spin correlation between dots is enhanced,and the conductance is strongly suppressed for the bonding state is almost doubly occupied.  相似文献   
114.
Checkpoint blockade immunotherapy (CBI) awakes a host innate immune system and reactivates cytotoxic T cells to elicit durable response in some cancer patients. Now, a cationic nanoscale metal–organic framework, W‐TBP, is used to facilitate tumor antigen presentation by enabling immunogenic photodynamic therapy (PDT) and promoting the maturation of dendritic cells (DCs). Comprised of dinuclear WVI secondary building units and photosensitizing 5,10,15,20‐tetra(p‐benzoato)porphyrin (TBP) ligands, cationic W‐TBP mediates PDT to release tumor associated antigens and delivers immunostimulatory CpG oligodeoxynucleotides to DCs. The enhanced antigen presentation synergizes with CBI to expand and reinvigorate cytotoxic T cells, leading to superb anticancer efficacy and robust abscopal effects with >97 % tumor regression in a bilateral breast cancer model.  相似文献   
115.
Source-drain bias measurements of transport across quantum antidots reveal a ladder of excited states analogous to the excitation spectrum of quantum dots. The antidot excitation spectrum provides an unambiguous method of determining the Coulomb-blockade charging energy and the energy difference between antidot single-particle states. The energy-level spacings and the presence of strong Kondo resonances in this regime cannot be explained within a non-interacting model.  相似文献   
116.
We investigate electron thermalization of tunnel junction arrays installed in a powerful dilution refrigerator whose mixing chamber can produce lattice temperatures down to 3 mK. The on-chip Coulomb blockade thermometers (CBT) against other thermometers at the mixing chamber provide direct information on the thermal equilibrium between the electronic system and the refrigerator. We can detect and discriminate between the heat load delivered through the wiring and that produced by the bias current of the CBT-measurement. The basic heat leak limits the minimum of the electronic temperature to slightly below 20 mK.  相似文献   
117.
The possibility of using single-electron digital circuits (SEDCs) to achieve ultra-high performance digital signal processing is explored. SEDCs are highly-scalable Coulomb blockade-based circuits that operate in the discrete limit where bits are represented by single electrons. Such circuits are well-suited to implementing bit-level systolic processing algorithms because the local connectivity of systolic arrays translates into locally-interconnected hardware. By relieving interconnect bandwidth limitations this enables circuits that can fully exploit the extreme scaling possible with the single-electron devices. Errors associated with co-tunneling, thermal fluctuations, etc. are an important issue in single-electron circuits, especially for a digital application. The systolic arrays are, however, amenable to simple error-correction techniques which may make computing with these unreliable components possible. Nevertheless, it must be emphasized that realization of these complex circuits depends on tremendous advances in fabrication technology, particularly to meet their stringent uniformity requirements.  相似文献   
118.
We introduce the ab-initio framework for zigzag-edged graphene fragment based single-electron transistor (SET) operating in the Coulomb blockade regime. Graphene is modeled using the density-functional theory and the environment is described by a continuum model. The interaction between graphene and the SET environment is treated self-consistently through the Poisson equation. We calculate the charging energy as a function of an external gate potential, and from this we obtain the charge stability diagram. Specifically, the importance of including re-normalization of the charge states due to the polarization of the environment has been demonstrated.  相似文献   
119.
Coherent control of OH‐free radicals interacting with the spin‐triplet state of a DNA molecule is investigated. A model Hamiltonian for molecular spin singlet‐triplet resonance is developed. We illustrate that the spin‐triplet state in DNA molecules can be efficiently populated, as the spin‐injection rate can be tuned to be orders of magnitudes greater than the decay rate due to small spin‐orbit coupling in organic molecules. Owing to the nano‐second life‐time of OH free radicals, a non‐equilibrium free energy barrier induced by the injected spin triplet state that lasts approximately longer than one‐micro second in room temperature can efficiently block the initial Hydrogen abstraction and DNA damage. For a direct demonstration of the spin‐blockade effect, a molecular simulation based on an ab‐initio Car‐Parrinello molecular dynamics is deployed. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   
120.
The electron tunneling through single self-assembled InAs dot in split-gate δ-doped channel transistor structure is reported for the first time. In the nearly pinch-off conditions, the channel current was found to manifest itself single-electron tunneling through a self-assembled InAs dot buried in adjacent to the channel. The line shape of the single-electron tunneling current through a single InAs dot is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号