首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4575篇
  免费   583篇
  国内免费   315篇
化学   3079篇
晶体学   8篇
力学   106篇
综合类   43篇
数学   656篇
物理学   227篇
无线电   1354篇
  2024年   10篇
  2023年   46篇
  2022年   56篇
  2021年   85篇
  2020年   153篇
  2019年   114篇
  2018年   121篇
  2017年   210篇
  2016年   232篇
  2015年   209篇
  2014年   275篇
  2013年   360篇
  2012年   262篇
  2011年   307篇
  2010年   279篇
  2009年   297篇
  2008年   302篇
  2007年   305篇
  2006年   274篇
  2005年   252篇
  2004年   216篇
  2003年   191篇
  2002年   147篇
  2001年   138篇
  2000年   124篇
  1999年   73篇
  1998年   70篇
  1997年   79篇
  1996年   54篇
  1995年   50篇
  1994年   37篇
  1993年   43篇
  1992年   26篇
  1991年   11篇
  1990年   11篇
  1989年   14篇
  1988年   8篇
  1987年   7篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1974年   1篇
排序方式: 共有5473条查询结果,搜索用时 437 毫秒
201.
Stereoblock polypropylenes comprising of iPP and sPP segments are synthesized by polymerization of the following binary system of metallocenes: the Cs‐symmetric [2,7‐t‐Bu2(Flu)2Ph2C(Cp)ZrCl2] and the C2‐symmetric rac‐Me2Si(2‐Me‐4‐Ph‐Ind)2ZrCl2. Blends of samples made either by each catalyst individually (solution blend) with materials obtained with the mixed catalyst system (reactor blend) are compared. The simultaneous presence of MAO and DEZ, enhancing fast and reversible transfer of the growing chains between the two active centers, leads to the formation of a stereoblock microstructure. In this case, low molecular weight polymers are obtained. The junction between the blocks is qualitatively observed in 13C NMR. When made in toluene, the stereoblock material consists of a majority of syndiotactic sequences, whereas the ratio is more equilibrated when the polymerization was conducted in the more polar chlorobenzene. This is confirmed by the results obtained with 13C NMR, CRYSTAF, HT HPLC, DSC, SSA, WAXD, and optical microscopy. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1422–1434  相似文献   
202.
A series of amino-acid-based amphiphilic diblock copolymer nano-objects having different morphologies were developed by reversible addition–fragmentation chain-transfer (RAFT) dispersion polymerization of styrene (St) in methanol. This was mediated by six different hydrophilic poly(N-acryloyl amino acid) macro-chain transfer agents (CTAs), including three carboxylic-acid-containing ones, poly(N-acryloyl-l -proline) (PAProOH), poly(N-acryloyl-4-trans-hydroxy-l -proline) (PAHypOH), and poly(N-acryloyl-l -threonine) (PAThrOH) prepared by RAFT polymerization, and their methyl ester forms, PAProOMe, PAHypOMe, and PAThrOMe. The effects of polymerization conditions on RAFT dispersion polymerization of St using a dithiocarbamate-terminated PAProOH was investigated. A systematic study of the effects of monomer conversion and concentration afforded the formation of various morphologies (i.e., spheres, worms, and vesicles). The effects of hydrogen-bonding and ionic interactions of the macro-CTAs on the assembled structures of the nano-objects were evaluated using six different macro-CTAs. Transforming the products from methanol to water via dialysis produced amino-acid-based block copolymer nano-objects, exhibiting pH-responsive morphological change, in aqueous solution.  相似文献   
203.
Dielectric elastomers (DEs), a class of soft electroactive polymers that change size upon exposure to an external electric field, constitute an increasingly important class of stimuli-responsive polymers due primarily to their large actuation strains, facile and low-cost fabrication, scalability, and mechanical robustness. Unless purposefully constrained, most DEs exhibit isotropic actuation wherein size changes are the same in all actuation directions. Previous studies of DEs containing oriented, stiff fibers have demonstrated, however, that anisotropic actuation along a designated direction is more electromechanically efficient since this design eliminates energy expended in nonessential directions. To identify an alternative, supramolecular-level route to anisotropic electroactuation, we investigate the thermal and mechanical properties of novel thermoplastic elastomer gels composed of a selectively solvated olefinic block copolymer that not only microphase-separates but also crystallizes upon cooling from the solution state. While these materials possess remarkable mechanical attributes (e.g., giant strains in excess of 4000%), their ability to be strain-conditioned enables huge anisotropic actuation levels, measured to be greater than 30 from the ratio of orthogonal actuation strains. This work establishes that crystallization-induced anisotropic actuation can be achieved with these DEs.  相似文献   
204.
Poly(ethylene oxide)-b-polyhedral oligomeric silsesquioxane (PEO–POSS) mixed with lithium bis(trifluoromethanesulfonyl)imide salt is a nanostructured hybrid organic–inorganic block copolymer electrolyte that may enable lithium metal batteries. The synthesis and characteristics of three PEO–POSS block copolymer electrolytes which only differ by their POSS silica cage substituents (ethyl, isobutyl, and isooctyl) is reported. Changing the POSS monomer structure results in differences in both thermodynamics and ion transport. All three neat polymers exhibit lamellar morphologies. Adding salt results in the formation of a disordered window which closes and gives way to lamellae at higher salt concentrations. The width of disordered window decreases with increasing length of the POSS alkyl chain substituent from ethyl to isobutyl and is absent in the isooctyl sample. Rheological measurements demonstrate good mechanical rigidity when compared with similar all-organic block copolymers. While salt diffusion coefficient and current ratio are unaffected by substituent length, ionic conductivity increases as the length of the alkyl chain substituent decreases: the ethyl substituent is optimal for ion transport. This is surprising because conventional wisdom suggests that ion transport occurs primarily in the PEO-rich domains, that is, ion transport should be unaffected by substituent length after accounting for the minor change in conducting phase volume fraction. © 2020 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2020 © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 363–371  相似文献   
205.
A block copolymer composed of a flexible polar poly(ethylene glycol) (PEG) and a less polar liquid crystalline poly(allene) segments is prepared by the living coordination polymerization of an allene derivative possessing trans‐azobenzene‐containing mesogenic substituent by the use of a π‐allylnickel macroinitiator bearing PEG segment. The thin film of the block copolymer is prepared by the spin coating of its solution onto mica or silicon wafer which proves to possess perpendicularly oriented nanocylindrical microphase separated structures as supported by the differential calorimetric, polarized optical microscopic, grazing‐incidence small‐angle X‐ray scattering, transmission electron microscope, and atomic force microscope measurements.  相似文献   
206.
NIR exposure at 790 nm activated photopolymerization of monomers comprising UV-absorbing moieties by using [CuII/(TPMA)]Br2 (TPMA=tris(2-pyridylmethyl)amine) in the ppm range and an alkyl bromide as initiator. Some of them comprised structural elements selected either from those showing proton transfer or photocycloaddition upon UV excitation. Polymers obtained comprise living end groups serving as macroinitiator for controlled synthesis of block copolymers with relatively narrow molecular weight distributions. Chromatographic results indicated formation of block copolymers produced by this synthetic approach. Free-radical polymerization of monomers pursued for comparison exhibited the expected broader dispersity of molecular weight compared to photo-ATRP. Polymerization of these monomers by UV photo-ATRP failed on the contrary to NIR photo-ATRP demonstrating the UV-filter function of the monomers. This work conclusively provides a new approach for the polymerization of monomers comprising UV-absorbing moieties through photo-ATRP in the NIR region. This occurred in a simple and efficient pathway. However, studies also showed that not all monomers chosen successfully proceeded in the NIR photo-ATRP protocol.  相似文献   
207.
《Mendeleev Communications》2020,30(6):731-733
  1. Download : Download high-res image (94KB)
  2. Download : Download full-size image
  相似文献   
208.
We report on the preparation of reduction‐responsive amphiphilic block copolymers containing pendent p‐nitrobenzyl carbamate (pNBC)‐caged primary amine moieties by reversible addition–fragmentation chain transfer (RAFT) radical polymerization using a poly(ethylene glycol)‐based macro‐RAFT agent. The block copolymers self‐assembled to form micelles or vesicles in water, depending on the length of hydrophobic block. Triggered by a chemical reductant, sodium dithionite, the pNBC moieties decomposed through a cascade 1,6‐elimination and decarboxylation reactions to liberate primary amine groups of the linkages, resulting in the disruption of the assemblies. The reduction sensitivity of assemblies was affected by the length of hydrophobic block and the structure of amino acid‐derived linkers. Using hydrophobic dye Nile red (NR) as a model drug, the polymeric assemblies were used as nanocarriers to evaluate the potential for drug delivery. The NR‐loaded nanoparticles demonstrated a reduction‐triggered release profile. Moreover, the liberation of amine groups converted the reduction‐responsive polymer into a pH‐sensitive polymer with which an accelerated release of NR was observed by simultaneous application of reduction and pH triggers. It is expected that these reduction‐responsive block copolymers can offer a new platform for intracellular drug delivery. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1333–1343  相似文献   
209.
Necessary conditions for the existence of a super‐simple, decomposable, near‐resolvable ‐balanced incomplete block design (BIBD) whose 2‐component subdesigns are both near‐resolvable ‐BIBDs are (mod ) and . In this paper, we show that these necessary conditions are sufficient. Using these designs, we also establish that the necessary conditions for the existence of a super‐simple near‐resolvable ‐RBIBD, namely (mod ) and , are sufficient. A few new pairwise balanced designs are also given.  相似文献   
210.
The construction of nanoscopic materials by synthetic methodologies that iterate covalent and supramolecular interactions has been developed over the past three decades as a powerful method to afford complex functional materials. Indeed, the present study was nearly lost in the archives of dissertation research completed in 2001, which revealed nanoscale conformational dynamics in the segmental reorganization, and partial inversion, of topologically shell crosslinked knedel-like (SCK) nanoparticles. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 204–214  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号