首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4575篇
  免费   583篇
  国内免费   315篇
化学   3079篇
晶体学   8篇
力学   106篇
综合类   43篇
数学   656篇
物理学   227篇
无线电   1354篇
  2024年   10篇
  2023年   46篇
  2022年   56篇
  2021年   85篇
  2020年   153篇
  2019年   114篇
  2018年   121篇
  2017年   210篇
  2016年   232篇
  2015年   209篇
  2014年   275篇
  2013年   360篇
  2012年   262篇
  2011年   307篇
  2010年   279篇
  2009年   297篇
  2008年   302篇
  2007年   305篇
  2006年   274篇
  2005年   252篇
  2004年   216篇
  2003年   191篇
  2002年   147篇
  2001年   138篇
  2000年   124篇
  1999年   73篇
  1998年   70篇
  1997年   79篇
  1996年   54篇
  1995年   50篇
  1994年   37篇
  1993年   43篇
  1992年   26篇
  1991年   11篇
  1990年   11篇
  1989年   14篇
  1988年   8篇
  1987年   7篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1974年   1篇
排序方式: 共有5473条查询结果,搜索用时 640 毫秒
181.
Cell membranes are essential barriers in Nature. To understand their properties and functions and to develop desirable applications, a simple and elegant approach is to study membranes that mimic the cell membrane. Lipid bilayers represent simple models that are physiologically representative when in the form of mixtures of various lipids, but they are not adequately stable even when covered with amphipathic proteins or when combined with polymers, thus preventing technological applications. This makes necessary the design of completely synthetic membranes. In this respect, amphiphilic copolymers that self‐assemble under dilute aqueous conditions and generate supramolecular polymer vesicles or films are ideal candidates for synthetic membranes. Their versatility in terms of chemistry and properties (permeability, mechanical stability, thickness), if appropriately designed, enable the insertion of biological molecules, such as membrane proteins and biopores, or the attachment of biomolecules at their surfaces. Here, we present the domain of synthetic membranes based on amphiphilic copolymers beginning with their generation and up to their applications in medicine, the food industry, and technology. Even though significant progress has been made in combining them with membrane proteins, open questions remain with respect to desired properties that could accommodate biological molecules and support further development of the field, from both the point of view of fundamental understanding and of applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
182.
Midblock‐sulfonated triblock copolymers afford a desirable opportunity to generate network‐forming amphiphilic materials that are suitable for use in a wide range of emerging technologies as fuel‐cell, water‐desalination, ion‐exchange, photovoltaic, or electroactive membranes. Employing a previously reported synthetic strategy wherein poly(ptert‐butylstyrene) remains unreactive, we have selectively sulfonated the styrenic midblock of a poly(ptert‐butylstyrene‐b‐styrene‐bptert‐butylstyrene) (TST) triblock copolymer to different extents. Comparison of the resulting sulfonated copolymers with results from our prior study provides favorable quantitative agreement and suggests that a shortened reaction time is advantageous. An ongoing challenge regarding the morphological development of charged block copolymers is the competition between microphase separation of the incompatible blocks and physical cross‐linking of ionic clusters, with the latter often hindering the former. Here, we expose the sulfonated TST copolymers to solvent‐vapor annealing to promote nanostructural refinement. The effect of such annealing on morphological characteristics, as well as on molecular free volume, is explored. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 490–497  相似文献   
183.
RAFT polymerization of styrene (St) in the presence of 5,10,15,20‐tetrakis(pentafluorophenyl)porphyrin (TFPP) was conducted using 4‐cyano‐4‐(thiobenzoyl)thiopentanoic acid as a chain‐transfer agent and azobisisobutyronitrile as an initiator at 60 °C. The resulting polymer exhibited a chlorin‐like UV‐vis spectrum, which indicated that the polymer possessed a reduced TFPP structure. Furthermore, an SEC trace recorded using UV‐vis detector (λ = 410 nm), which selectively detected the TFPP‐incorporated polymer, shifted toward higher molecular mass as the polymerization progressed. This evidence indicated that TFPP acted as a vinylene‐type monomer, such as maleimide, to form a copolymer, namely, poly(St‐co‐TFPP). The mole fraction of TFPP units was estimated to be 0.74 × 10?3, which was close to that in the feed (1 × 10?3). Chain extension of poly(St‐co‐TFPP) with polyethylene glycol monomethyl ether acrylate (PEGA) was performed to afford the amphiphilic block copolymer poly(St‐co‐TFPP)‐b‐poly(PEGA). The degrees of polymerization of St and PEGA were determined to be 64 and 75, respectively. Poly(St‐co‐TFPP)‐b‐poly(PEGA) formed micelles following dialysis. The median diameter of the micelles in solution was determined to be 16 nm by DLS. The photocytotoxicity of the micelle solution was evaluated in a human glioblastoma cell line (U251) and an N‐methyl‐N'‐nitro‐N‐nitrosoguanidine‐induced mutant of a rat murine RGM‐1 gastric carcinoma mucosal cell line (RGK‐1). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3395–3403  相似文献   
184.
185.
Block copolymer (BCP) films with long-range lateral ordering and orientation are crucial for many applications. Here, we report a simple, versatile strategy based on a solution casting procedure, to produce millimeter thick film of BCPs with highly oriented nanostructures. Transmission electron microscope (TEM), small angle X-ray scattering (SAXS), and Hansen solubility parameters were used to study the morphology and interactions of the system. A variety of BCP-solvent pairs were investigated. Factors including set-up geometry, BCP characteristics, solvent evaporation, surface tension, and interactions, such as solvent-BCP, solvent-substrate, and BCP-substrate were examined. A mechanism is proposed to describe the observed long-range lateral ordering and orientation in films up to 1 mm in thickness. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1369–1375  相似文献   
186.
187.
用AGET ATRP法制备含环氧基的含氟嵌段聚合物聚甲基丙烯酸六氟丁酯-b-聚甲基丙烯酸缩水甘油酯(PHFMA-b-PGMA),将其用于双酚A型环氧树脂改性.表面性能测试表明,PHFMA-b-PGMA改性环氧涂膜的表面疏水疏油性优于纯环氧,且经长时间水浸泡、丁酮浸泡或高温热处理后,其表面稳定性仍表现优良.热性能测试表明,PHFMA-b-PGMA改性环氧的热稳定性优于纯环氧.机械性能测试结果表明,用PHFMA-bPGMA改性环氧有助于韧性提高,与断裂面SEM测试结果相吻合.  相似文献   
188.
A series of water‐soluble siloxane polymers with pendent phosphorylcholine (PC) and sulfobetaine (SB) zwitterions was prepared using thiol‐ene “click” chemistry. Specifically, well‐defined vinyl‐substituted siloxane homopolymers and block copolymers were functionalized with small molecule zwitterionic thiols at room temperature. Rapid and quantitative substitution of the pendent vinyl groups was achieved, and zwitterionic polysiloxanes of narrow molecular weight distribution were obtained. The PC‐ and SB‐substituted polymers were found to be readily soluble in pure, salt‐free water. Critical micelle concentrations (CMCs) of these polymers in water were measured using a pyrene fluorescence probe, with CMC values estimated to be <0.01 g/L. Polymer aggregates were studied by dynamic light scattering, and the micelles generated from the PC block copolymers were visualized, after drying, by transmission electron microscopy. Aqueous solutions of these zwitterionic polysiloxanes significantly reduced the oil‐water interfacial surface tension, functioning as polymer amphiphiles that lend stability to oil‐in‐water emulsions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 127–134  相似文献   
189.
Living anionic polymerization of an acetal protected 4‐hydroxystyrene monomer, (4‐(2‐tetrahydropyranyloxy)styrene) (OTHPSt), and the chain extension of the poly(OTHPSt) anion with a variety of monomers including styrene, 4‐tert‐butylstyrene, methacryloyl polyhedral oligomeric silsesquioxane (MAPOSS) and hexamethylcyclotrisiloxane is demonstrated. The P(OTHPSt) homopolymer has a glass transition temperature well above room temperature, which facilitates handling and purification of the protected poly(4‐hydroxystyrene) (PHS). The resulting diblock copolymers have narrow dispersities <1.05. Chemoselective mild deprotection conditions for the P(OTHPSt) block were identified to prevent simultaneous degradation of the MAPOSS or dimethylsiloxane (DMS) block, thus allowing for the first reported synthesis of P(HS‐b‐DMS) and P(HS‐b‐MAPOSS). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1458–1468  相似文献   
190.
We demonstrate the directional alignment of perpendicular‐lamellae domains in fluorinated three‐armed star block polymer (BP) thin films using solvent vapor annealing with shear stress. The control of orientation and alignment was accomplished without any substrate surface modification. Additionally, three‐armed star poly(methyl methacrylate‐block‐styrene) [PMMA‐PS] and poly(octafluoropentyl methacrylate‐block‐styrene) were compared to their linear analogues to examine the impact of fluorine content and star architecture on self‐assembled BP feature sizes and interdomain density profiles. X‐ray reflectometry results indicated that the star BP molecular architecture increased the effective polymer segregation strength and could possibly facilitate reduced polymer domain spacings, which are useful in next‐generation nanolithographic applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1663–1672  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号