首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1591篇
  免费   266篇
  国内免费   53篇
化学   1283篇
晶体学   4篇
力学   26篇
综合类   1篇
物理学   40篇
无线电   556篇
  2024年   14篇
  2023年   158篇
  2022年   29篇
  2021年   133篇
  2020年   107篇
  2019年   82篇
  2018年   87篇
  2017年   108篇
  2016年   104篇
  2015年   103篇
  2014年   91篇
  2013年   165篇
  2012年   84篇
  2011年   74篇
  2010年   79篇
  2009年   76篇
  2008年   73篇
  2007年   53篇
  2006年   49篇
  2005年   47篇
  2004年   53篇
  2003年   48篇
  2002年   33篇
  2001年   13篇
  2000年   8篇
  1999年   11篇
  1998年   6篇
  1997年   8篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1988年   1篇
  1987年   1篇
排序方式: 共有1910条查询结果,搜索用时 15 毫秒
61.
Tough hydrogels, polymeric network structures with excellent mechanical properties (such as high stretchability and toughness), are emerging soft materials. Despite their remarkably mechanical features, tough hydrogels exhibit two flaws (freezing around the icing temperatures of water and drying under arid conditions). Inspired by cryoprotectants (CPAs) used in the inhibition of the icing of water in biological samples, a versatile and straightforward method is reported to fabricate extreme anti‐freezing, non‐drying CPA‐based organohydrogels with long‐term stability by partially displacing water molecules within the pre‐fabricated hydrogels. CPA‐based Ca‐alginate/polyacrylamide (PAAm) tough hydrogels were successfully fabricated with glycerol, glycol, and sorbitol. The CPA‐based organohydrogels remain unfrozen and mechanically flexible even up to ?70 °C and are stable under ambient conditions or even vacuum.  相似文献   
62.
Macroscopic supramolecular assembly (MSA) is a recent development in supramolecular chemistry to associate visible building blocks through non‐covalent interactions in a multivalent manner. Although various substrates (e.g. hydrogels, rigid materials) have been used, a general design rule of building blocks in MSA systems and interpretation of the assembly mechanism are lacking and are required. Herein we design three model systems with varied elastic modulus and correlated the MSA probability with the elasticity. Based on the effects of substrate deformability on multivalency, we have proposed an elastic‐modulus‐dependent rule that building blocks below a critical modulus of 2.5 MPa can achieve MSA for the used host/guest system. Moreover, this MSA rule applies well to the design of materials for fast underwater adhesion: Soft substrates (0.5 MPa) can achieve underwater adhesion within 10 s with one order of magnitude higher strength than that of rigid substrates (2.5 MPa).  相似文献   
63.
Hydrophobic reduced graphene oxides (rGOs) were generated in agarose hydrogel beads (AgarBs) by NaBH4 reduction of graphene oxides (GOs) initially loaded in the AgarBs. The resulting rGO‐loaded AgarBs were able to effectively adsorb organic compounds in water as a result of the attractive hydrophobic force between the rGOs in the AgarBs and the organic compounds dissolved in aqueous media. The adsorption capacity of the rGOs was fairly high even toward reasonably water‐soluble organic compounds such as rhodamine B (321.7 mg g?1) and aspirin (196.4 mg g?1). Yet they exhibited salinity‐enhanced adsorption capacity and preferential adsorption of organic compounds with lower solubility in water. Such peculiar adsorption behavior highlights the exciting possibility for adopting an adsorption strategy, driven by hydrophobic forces, in practical wastewater treatment processes.  相似文献   
64.
Aqueous gel deswelling rates for copolymer hydrogels comprising N‐isopropylacrylamide (IPAAm) and 2‐carboxyisopropylacrylamide (CIPAAm) in response to increasing temperatures were investigated. Compared with pure IPAAm‐based gels, IPAAm–CIPAAm gels shrink very rapidly in response to small temperature increases across their lower critical solution temperature (their volume is reduced by five‐sixths within 60 s). Shrinking rates for these hydrogels increase with increasing CIPAAm content. In contrast, structurally analogous IPAAm–acrylic acid (AAc) copolymer gels lose their temperature sensitivity with the introduction of only a few mole percent of AAc. Additionally, deswelling rates of IPAAm–AAc gels decrease with increasing AAc content. These results indicate that IPAAm–CIPAAm copolymer gels behave distinctly from IPAAm–AAc systems even if both comonomers, CIPAAm and AAc, possess carboxylic acid groups. Thus, we propose that the sensitive deswelling behavior for IPAAm–CIPAAm gels results from strong hydrophobic chain aggregation maintained between network polymer chains due to the similar chemical structures of CIPAAm and IPAAm. This structural homology facilitates aggregation of chain isopropylamide groups for both IPAAm and CIPAAm sequences with increasing temperature. The incorporation of AAc, however, shows no structural homology to IPAAm, inhibiting chain aggregation and limiting collapse. A functionalized temperature‐sensitive poly(N‐isopropylacrylamide) hydrogel containing carboxylic acid groups is possible with CIPAAm, producing rapid and large volume changes in response to smaller temperature changes. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 335–342, 2001  相似文献   
65.
Maltose is a ubiquitous disaccharide produced by the hydrolysis of starch. Amphiphilic ureas bearing hydrophilic maltose moiety were synthesized via the following three steps: I) construction of urea derivatives by the condensation of 4-nitrophenyl isocyanate and alkylamines, II) reduction of the nitro group by hydrogenation, and III) an aminoglycosylation reaction of the amino group and the unprotected maltose. These amphiphilic ureas functioned as low molecular weight hydrogelators, and the mixtures of the amphipathic ureas and water formed supramolecular hydrogels. The gelation ability largely depended on the chain length of the alkyl group of the amphiphilic urea; amphipathic urea having a decyl group had the highest gelation ability (minimum gelation concentration=0.4 mM). The physical properties of the supramolecular hydrogels were evaluated by measuring their thermal stability and dynamic viscoelasticity. These supramolecular hydrogels underwent gel-to-sol phase transition upon the addition of α-glucosidase as a result of the α-glucosidase-catalyzed hydrolysis of the maltose moiety of the amphipathic urea.  相似文献   
66.
67.
Three different techniques have been applied to the evaluation of the degree of cross-linking of superabsorbent cellulose-based hydrogels obtained from water solutions of carboxymethylcellulose sodium salt (CMCNa) and hydroxyethylcellulose (HEC), chemically cross-linked with divinyl sulfone. These polyelectrolyte hydrogels are biodegradable and have the same sorption capacity as acrylate-based superabsorbents on the market. A 13C solid state NMR analysis was carried out on dry samples of hydrogel to obtain the degree of cross-linking, an important parameter that affects the swelling and mechanical properties of a hydrogel. Dynamic mechanical analysis was performed during the hydrogel cross-linking using a parallel plate rheometer under oscillatory deformations in order to monitor the evolution of the hydrogel viscoelastic properties during the synthesis. The value of |G*| and the slope of the stress-deformation ratio plots from uniaxial compression tests were used to evaluate the elastically effective degree of cross-linking according to classical rubber elasticity theory. Moreover, a dynamic mechanical analysis was carried out on cross-linked hydrogels at different degrees of swelling in order to investigate the influence of the swelling on the mechanical properties and the application of rubber elasticity theory to swollen hydrogels.  相似文献   
68.
A vinyl‐functionalized polyphosphate (PIOP) was synthesized by ring‐opening polymerization of 2‐isopropyl‐2‐oxo‐1,3,2‐dioxaphospholane and 2‐(2‐oxo‐1,3,2‐dioxaphosphoroyloxyethyl methacrylate) with triisobutylaluminum as an initiator. The number‐averaged molecular weight of the PIOP was 1.2 × 104. The average number of vinyl groups in the PIOP is 2.20. Transparent hydrogels were prepared by the radical polymerization of 2‐methacryroyloxyethyl phosphorylcholine with PIOP as a cross‐linking reagent. These hydrogels may have many applications in the biomedical field because of their biodegradability and biocompatibility.

Synthetic route of PIOP.  相似文献   

69.
Superabsorbent hydrogel composites   总被引:1,自引:0,他引:1  
A new cost‐effective approach to enhance gel strength of superabsorbent hydrogels was invented. Superabsorbent hydrogel composites (SHCs) were prepared through an optimized rapid solution polymerization of concentrated partially neutralized acrylic acid in the presence of a crosslinking agent under normal atmospheric conditions. Kaolin was used as an inorganic component in the polymerization process to strengthen the hydrogel products. FT‐IR spectroscopy was used to confirm grafting of acrylic chains on to the surface of kaolin particles. Morphology of the products was studied by scanning electron microscopy (SEM). Compared with the kaolin‐free hydrogel (control), kaolin caused a reduced equilibrium swelling and swelling rate as low as 17–31% and 19–29%, respectively. Kaolin, however, resulted in enhanced gel strength as high as 21–35% compared to the control. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to study thermal properties of the composites. The SHCs exhibited higher thermal stability than the control. Meanwhile, changes in certain thermal transitions reconfirmed the chemical interaction of the acrylic chain with kaolin. These thermostabilized strengthened superabsorbent hydrogels may be considered as good candidates for agricultural application to retain more water under soil pressure. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
70.
The development of high-efficiency electrocatalysts with low costs for the oxygen evolution reaction (OER) is essential, but remains challenging. Herein, a new synthetic process is proposed to prepare Ni3S4 particles embedded in N,P-codoped honeycomb porous carbon aerogels (Ni3S4/N,P-HPC) through a hydrogel approach. The preparation of Ni3S4/N,P-HPC begins with the sol–gel polymerization of tripolyphosphate, chitosan, and guanidine polymer that contains metal-binding sites, allowing for the uniform incorporation of Ni ions into the gel matrix, freeze-drying, and subsequent carbonization under an inert atmosphere. This synthesis resolves difficulties in synthesizing the pure Ni3S4 phase caused by the instability of Ni3S4 at high temperature, while affording good control of the porous structure and N,P-doping of carbon aerogels. The synergy between the structural advantages of N,P-carbon aerogels (such as easily accessible active sites, high specific surface area, and excellent electron transport) and the intrinsic electrochemical properties of Ni3S4 result in the outstanding OER performance of Ni3S4/N,P-HPC, with overpotentials as low as 0.37 V at 10 mA cm−2. The work outlined herein offers a simple and effective method for the development of carbon-based electrocatalysts for renewable energy conversion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号