首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1556篇
  免费   301篇
  国内免费   53篇
化学   1283篇
晶体学   4篇
力学   26篇
综合类   1篇
物理学   40篇
无线电   556篇
  2024年   14篇
  2023年   158篇
  2022年   29篇
  2021年   133篇
  2020年   107篇
  2019年   82篇
  2018年   87篇
  2017年   108篇
  2016年   104篇
  2015年   103篇
  2014年   91篇
  2013年   165篇
  2012年   84篇
  2011年   74篇
  2010年   79篇
  2009年   76篇
  2008年   73篇
  2007年   53篇
  2006年   49篇
  2005年   47篇
  2004年   53篇
  2003年   48篇
  2002年   33篇
  2001年   13篇
  2000年   8篇
  1999年   11篇
  1998年   6篇
  1997年   8篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1988年   1篇
  1987年   1篇
排序方式: 共有1910条查询结果,搜索用时 15 毫秒
151.
Frontal polymerization was used as an alternative technique for the preparation of super water absorbent hydrogels obtained from acrylamide and 3‐sulfopropyl acrylate, potassium salt (SPAK) in the presence of N,N′‐methylene‐bisacrylamide as a crosslinker. All samples were synthesized in dimethyl sulfoxide, and their swelling behavior in water was investigated. It was found that their features are dependent on the monomer ratio used, which influenced the porous morphology, and consequently, the swelling capability. The swelling ratio ranges from about 1000% for the acrylamide homopolymer up to 14,000% for the sample containing 87.5 mol % of SPAK, thus indicating that this parameter can be easily tuned by using the appropriate monomer ratio. The affinity towards water was eventually confirmed by contact angle analysis. Polymer hydrogels made from at least 62.5 mol % SPAK exhibit a thermoresponsive behavior, with a lower critical solution temperature of ~30 °C. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2486–2490, 2010  相似文献   
152.
N‐isopropyl acrylamide (NIPAAm) hydrogels are known as thermosensitive crosslinked polymer networks. In this work, the network parameters of their composites, i.e., NIPAAm/sodium montmorillonite (NIPAAm/Na+MMT) hydrogels synthesized by free radical solution polymerization in the presence of two different types of accelerator (tetramethyl ethylenediamine (TEMED) and ethylenediamine tetraacetic acid (EDTA)) and initiator (potassium persulphate (K2S2O8) and cerium ammonium nitrate ((NH4)2Ce(NO3)6), Ce(IV)) using five different clay content (in the range of 1.0–5.0 wt % of total monomer concentration) at 25 °C were presented and discussed. FTIR spectra, XRD patterns, SEM photographs, and network parameters of the samples indicated that the presence of COOH groups on EDTA molecules was resulted in the formation of exfoliated structures and the activity of EDTA/KPS redox pair was higher than those of TEMED/KPS and EDTA/Ce (IV) pairs. The compression moduli (G) of the hydrogels initiated with EDTA/Ce(IV) redox pair showed smooth and continual changings with increase in Na+MMT content (for swelling equilibrium at 25 °C) on the contrary of EDTA/KPS and TEMED/KPS pairs. It might be related to low initiator efficiency of cerium ammonium nitrate than KPS molecules, having higher effective crosslinking density with increasing clay content. On the other hand, the G moduli of NIPAAm/Na+MMT hydrogels (above their phase transition temperature) initiated with TEMED/KPS redox pair were higher than the others because of the more hydrophobic nature of TEMED molecules. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1256–1264, 2010  相似文献   
153.
In this article, we report on the viscoelastic and thermal properties of agarose–polyacrylamide (PAAm) interpenetrating polymer hydrogels (IPHs) and semi‐IPHs as a function of agarose concentration and PAAm crosslinking degree. The results demonstrated that the agarose is able to gel in the presence of crosslinked and linear IPHs. In addition, the reticulation of PAAm in the presence of agarose is confirmed for the case of IPHs giving rise to systems with dimensional stability at high temperatures. The formation of a fully IPH was ascertained at low agarose concentrations. A study of the morphology and nanoscale elasticity of the different systems has been carried out with atomic force microscopy/ultrasonic force microscopy (UFM). UFM data provide further evidence of interpenetration, allowing us to visualize—if present—phase‐separated domains with nanoscale resolution for the various crosslinking degrees and PAAm and agarose concentrations used during the formation of the IPHs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   
154.
We report the swelling behavior of chemically crosslinked polyvinyl alcohol (PVA) gels with different degrees of hydrolysis in water, several organic solvents, and their mixed solvents. The gels were dried after gelation and were put into their respective solvents. The gel volume in pure water decreased with increasing temperatures, and the total changes increased with decreasing degrees of hydrolysis. The swelling ratio depends on the solvent and its concentration. In the cases of mixed solvents of methanol–water, ethanol–water, and acetone–water, the gels shrank continuously with increasing concentrations of solvents and reached the collapsed state in the pure organic solvent. In the case of dimethyl sulfoxide (DMSO), on the other hand, the gels shrunk, swelled, and finally reached the swollen state in pure DMSO. Results of measurements using Fourier Transform infrared spectroscopy (FTIR) and X‐ray diffraction (XRD) suggested that crosslinks and microcrystallites were formed due to hydrogen bonds during the drying process after gelation. The hydrogen bonds were partly destroyed in a rich solvent, but the residual hydrogen bonds had an essential role in determining the swelling behavior in a poor solvent. The swelling behavior and the possible phase transition of the present system are discussed in terms of the solubility of polymers with different degrees of hydrolysis in given mixed solvents and in terms of the formation and destruction of physical crosslinks in the chemical PVA gels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1978–1986, 2010  相似文献   
155.
Novel tricontinuous membranes consisting of well‐defined hydrophilic poly(ethylene glycol) (PEG) and lipophilic polyisobutylene (PIB) segments crosslinked by oxyphilic poly(pentamethylcyclopentasiloxane) (PD5) domains have been synthesized and characterized. Tricontinuity arises because the three membrane constituents—PEG, PIB, and PD5—are mutually incompatible and give rise to three independent cocontinuous phases (channels). The continuous PEG segments impart swelling in water (hydrogel character), the rubbery PIB moieties provide strength, and the PD5 domains provide crosslinking and enhanced O2 permeability. The synthesis involves the random cohydrosilation of various lengths (number‐average molecular weights) of α,ω‐diallyl‐PEG and α,ω‐diallyl‐PIB segments by pentamethylcyclopentasiloxane (D5H) followed by water‐mediated oxidation of the SiH groups of the D5H to SiOH groups, which immediately polycondense to PD5 domains. Membranes containing about equal amounts of PEG, PIB, and PD5 give rise to tricontinuous morphologies that allow the simultaneous permeation of water, heptane, and oxygen via three cocontinuous channels. The number‐average molecular weight of the PEG segment, that is, the number‐average molecular weight of the hydrophilic segment between two PD5 crosslink sites, determines the dimensions (pore sizes) of the channels through which water can permeate. A method has been developed for studying the oxygen permeability of membranes. The microarchitecture of the membranes has been investigated with selective swelling experiments and Fourier transform infrared spectroscopy, their mechanical properties have been examined in the water‐swollen state with Instron measurements, and their bulk morphologies and thermal degradation have been determined with differential scanning calorimetry and thermogravimetric analysis, respectively. The findings have been interpreted in terms of phase‐separated PEG, PIB, and PD5 microdomains. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1209–1217, 2002  相似文献   
156.
The properties of surface‐ and bulk‐modified poly(dimethylsiloxane) (PDMS) were examined. Laser‐induced surface grafting of poly(2‐hydroxyethyl methacrylate) (PHEMA) on PDMS and a sequential method for preparation of interpenetrating polymer networks of PDMS/PHEMA were, respectively, used for surface and bulk modifications. The hydrogel content and water‐uptake capability of the modified samples were also investigated. The modified PDMS samples were examined by performing attenuated total reflection/Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, scanning electron microscopy, and water contact‐angle measurements. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2145–2156, 2003  相似文献   
157.
158.
The synthesis of a thermoresponsive hydrogel of poly(glycidyl methacrylate‐coN‐isopropylacrylamide) (PGMA‐co‐PNIPAM) and its application as a nanoreactor of gold nanoparticles are studied. The thermoresponsive copolymer of PGMA‐co‐PNIPAM is first synthesized by the copolymerization of glycidyl methacrylate and N‐isopropylacrylamide using 2,2′‐azobis(isobutyronitrile) as an initiator in tetrahydrofuran at 70 °C and then crosslinked with diethylenetriamine to form a thermoresponsive hydrogel. The lower critical solution temperature (LCST) of the thermoresponsive hydrogel is about 50 °C. The hydrogel exists as 280‐nm spheres below the LCST. The diameter of the spherical hydrogel gradually decreases to a minimum constant of 113 nm when the temperature increases to 75 °C. The hydrogel can act as a nanoreactor of gold nanoparticles because of the coordination of nitrogen atoms of the crosslinker with gold ions, on which a hydrogel/gold nanocomposite is synthesized. The LCST of the resultant hydrogel/gold nanocomposite is similar to that of the hydrogel. The size of the resultant gold nanoparticles is about 15 nm. The hydrogel/gold nanocomposite can act as a smart and recyclable catalyst. At a temperature below the LCST, the thermoresponsive nanocomposite is a homogeneous and efficient catalyst, whereas at a temperature above the LCST, it becomes a heterogeneous one, and its catalytic activity greatly decreases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2812–2819, 2007  相似文献   
159.
Switchable self‐assemblies respond to external stimuli with a transition between near‐equilibrium states. Although being a key to present‐day advanced materials, these systems respond rather passively, and do not display autonomous dynamics. For autonomous behavior, approaches must be found to orchestrate the time domain of self‐assemblies, which would lead to new generations of dynamic and self‐regulating materials. Herein, we demonstrate catalytic control of the time domain of pH‐responsive peptide hydrogelators in a closed system. We program transient acidic pH states by combining a fast acidic activator with the slow, enzymatic, feedback‐driven generation of a base (dormant deactivator). This transient state can be programmed over orders of magnitude in time. It is coupled to dipeptides to create autonomously self‐regulating, dynamic gels with programmed lifetimes, which are used for fluidic guidance, burst release, and self‐erasing rapid prototyping.  相似文献   
160.
We report the preparation of thermally tunable hydrogels displaying angle‐independent structural colors. The porous structures were formed with short‐range order using colloidal amorphous array templates and a small amount of carbon black (CB). The resultant porous hydrogels prepared using colloidal amorphous arrays without CB appeared white, whereas the hydrogels with CB revealed bright structural colors. The brightly colored hydrogels rapidly changed hues in a reversible manner, and the hues varied widely depending on the water temperature. Moreover, the structural colors were angle‐independent under diffusive lighting because of the isotropic nanostructure generated from the colloidal amorphous arrays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号