首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1543篇
  免费   301篇
  国内免费   53篇
化学   1279篇
晶体学   4篇
力学   24篇
综合类   1篇
物理学   39篇
无线电   550篇
  2024年   8篇
  2023年   158篇
  2022年   24篇
  2021年   133篇
  2020年   106篇
  2019年   82篇
  2018年   87篇
  2017年   108篇
  2016年   103篇
  2015年   103篇
  2014年   91篇
  2013年   165篇
  2012年   84篇
  2011年   74篇
  2010年   79篇
  2009年   76篇
  2008年   73篇
  2007年   53篇
  2006年   49篇
  2005年   47篇
  2004年   53篇
  2003年   48篇
  2002年   33篇
  2001年   13篇
  2000年   8篇
  1999年   11篇
  1998年   6篇
  1997年   8篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1988年   1篇
  1987年   1篇
排序方式: 共有1897条查询结果,搜索用时 937 毫秒
11.
A series of novel multifunctional hydrogels that combined the merits of both thermoresponsive and biodegradable polymeric materials were designed, synthesized, and characterized. The hydrogels were copolymeric networks composed of N‐isopropylacrylamide (NIPAAM) as a thermoresponsive component, poly(L‐lactic acid) (PLLA) as a hydrolytically degradable and hydrophobic component, and dextran as an enzymatically degradable and hydrophilic component. The chemical structures of the hydrogels were characterized by an attenuated total reflection–Fourier transform infrared spectroscopy (ATR–FTIR) technique. The hydrogels were thermoresponsive, showing a lower critical solution temperature (LCST) at approximately 32 °C, and their swelling properties strongly depended on temperature changes, the balance of the hydrophilic/hydrophobic components, and the degradation of the PLLA component. The degradation of the hydrogels caused by hydrolytic cleavage of ester bonds in the PLLA component was faster at 25 °C below the LCST than at 37 °C above the LCST, determined by the ATR–FTIR technique. Due to their multifunctional properties, the designed hydrogels show great potential for biomedical applications, including drug delivery and tissue engineering. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5054–5066, 2004  相似文献   
12.
Poly(D ,L ‐lactide) and poly(D ,L ‐lactide‐co‐glycolide) with various composition and with one methacrylate and one carboxylate end group were synthesized and grafted onto poly(vinyl alcohol) (PVA) via the carboxylate group. The graft copolymers were crosslinked via the methacrylate groups using a free radical initiator. The polymer networks were characterized by means of NMR and studied qualitatively by means of IR spectroscopy. The influence of the glycolide content in the polyester grafts and of the number of ester units in the grafts on thermal properties and swellability were studied as well. The high swellability in water is characteristic of all hydrogels. Differential scanning calorimetry (DSC) showed a single glass transition temperature that occurs in the range between 51 and 69 °C. Thermogravimetric analysis (TGA) of the networks showed the main loss in weight in the temperature range between 290 and 370 °C. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4536–4544, 2007  相似文献   
13.
To obtain a hydrogel‐like elastic membrane, we prepared semi‐interpenetrating polymer networks (IPNs) by the radical polymerization of methacrylates such as 2‐methacryloyloxyethyl phosphorylcholine (MPC), 2‐hydroxyethylmethacrylate, and triethyleneglycol dimethacrylate diffused into segmented polyurethane (SPU) membranes swollen with a monomer mixture. The values of Young's modulus for the hydrated semi‐IPN membranes were less than that for an SPU membrane because of higher hydration, but they were much higher than that for a hydrated MPC polymer gel (non‐SPU). According to a thermal analysis, the MPC polymer influenced the segment association of SPU. The diffusion coefficient of 8‐anilino‐1‐naphthalenesulfonic acid sodium salt from the semi‐IPN membrane could be controlled with different MPC unit concentrations in the membrane, and it was about 7 × 102 times higher than that of the SPU membrane. Fibroblast cell adhesion on the semi‐IPN membrane was effectively reduced by the MPC units. We concluded that semi‐IPNs composed of the MPC polymer and SPU may be novel polymer materials possessing attractive mechanical, diffusive‐release, and nonbiofouling properties. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 68–75, 2003  相似文献   
14.
Maize starch was modified by allyl chloride adopting an interfacial reaction technique with cetyltrimethyl ammonium bromide as a phase‐transfer catalyst and pyridine as an acid acceptor. The degree of substitution was determined from an increasing carbon content of the modified starch. The percentage of carbon and hydrogen of the allyl‐modified starch was estimated by elemental analysis (C, H, and N), and the product characterization was done through 1H NMR and 13C NMR analyses. The allyl‐modified starch was then copolymerized with methacrylic acid and a combination of methacrylic acid and acrylamide at 50 and 70 °C with potassium persulfate as an initiator. The copolymer thus formed swelled in distilled water after neutralization with sodium carbonate. The percentage of absorption capacity of the hydrogels was determined with distilled water and 0.9% NaCl solution. The highest percentage of absorption, 6500%, was achieved for the developed hydrogel containing allyl starch and acrylic monomer in a 1.7:1 w/w ratio and acrylic monomer, namely, methacrylic acid and acrylamide in a 3.2:1 w/w ratio. The study on biodegradability of the developed hydrogel showed that the hydrogel is degradable in the presence of diastase (amylase). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1650–1658, 2003  相似文献   
15.
16.
The polysaccharide, kappa‐carrageenan (κC) was chemically modified to achieve a novel superabsorbent hydrogel via graft copolymerization of methacrylamide (MAM) onto the substrate followed by alkaline hydrolysis. Ammonium persulfate (APS) and N,N′‐methylene bisacrylamide (MBA) were used as a free‐radical initiator and a crosslinker, respectively. The saponification reaction was carried out using sodium hydroxide aqueous solution. Either κC‐g‐PMAM or hydrolyzed κC‐g‐PMAM (PMAM: polymethacrylamide) was characterized by FT‐IR spectroscopy. The effect of grafting variables (i.e. concentration of MBA, MAM, and APS) and alkaline hydrolysis conditions (i.e. NaOH concentration, hydrolysis time and temperature) were systematically optimized to achieve a hydrogel with swelling capacity as high as possible. The swelling capacity of these hydrogels was also measured in various salt solutions. Results indicated that the swelling ratios decreased with an increase in the ionic strength of the salt solutions. This behavior can be attributed to charge screening effect for monovalent cations, as well as ionic crosslinking for multivalent cations. Absorbency of superabsorbing hydrogels was examined in buffer solutions with pH range 1–13. Also, the pH reversibility and on–off switching behavior, at pH values 3.0 and 8.0, makes the synthesized hydrogels good candidates for controlled delivery of bioactive agents. Finally, swelling kinetics in distilled water and various salt solutions was preliminary investigated. Results showed that the swelling in water was faster than in saline solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
17.
敏感性水凝胶及其应用研究进展   总被引:2,自引:0,他引:2  
本文论述了各类敏感性水凝胶的发展历史和目前研究状况以及它们的应用研究进展,同时也对影响敏感性的凝胶结构因素和有关水凝胶敏感性相转变的物理解释作了简单介绍。  相似文献   
18.
In this work, we report on poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels obtained by a low heat curing reaction. These materials are suitable for in situ preparation and therefore endowed with a potential for several biomedical applications. The novel procedure adopted involves as the first step the synthesis of a soluble oligomeric PHEMA precursor containing polymerizable functions as side substituents. As the second step, the precursor is dissolved in equal amounts of 2-hydroxyethyl methacrylate (HEMA) and water, to form a viscous but still injectable syrup. A low temperature water soluble initiator is then added. The curing reaction starts promptly and is completed within few minutes. During the entire process the internal temperature never rises above 40 degrees C. Preliminary mechanical characterizations performed on the hydrogels in their water-swollen state and diffusion tests in absorption/desorption experiments clearly indicated that on all respects the novel hydrogels are comparable with conventional PHEMA hydrogels obtained according to literature from HEMA in the presence of divinyl crosslinkers. However, the much shorter curing time combined with the far lower curing temperature endow the new hydrogels with a higher potential in view of specific surgical requirements, and particularly for in situ preparation.  相似文献   
19.
 The dependence of the stability of SiO2 and Al2O3 sols on the pH of their medium has been studied. Vapor adsorption isotherms on powders were prepared from acidic and basic sols, the immersion enthalpy (heat) of samples containing preadsorbed water have been determined and, also, the reversibility of the sol ⇌ xerogel transformation, i.e. the peptizability of the powders, has been investigated. Based on the flocculation values determined with KCl, the sols have been classified into three groups. The stability of highly hydrophilic sols (acidic SiO2- and Al2O3-sols) is ensured by a thick continuous diffuse lyosphere formed around the particles, as the continuity principle by Ostwald–Buzágh suggests. In this case, no electric charge is needed for ensuring stability. These sols are thermodynamically stable (group 1). Sols with medium stability are stabilized by the electrical double layer around the particles and by 1–2 layers of adsorbed water. The flocculation value of these sols is determined by the electrostatic interaction, whereas the peptizability of the flocs is related to formation of water layers. Such sols are the basic SiO2- and Al2O3-sols (group 2). Sols of low stability are of hydrophobic nature. Their flocculation value with 1:1 electrolytes is smaller than 0.1 molkg-1. The transformation process sol ⇒ floccule ⇒ xerogel is mostly irreversible. There are a lot of such sols (group 3). The existence of a hydrosphere is proved by the almost identical value of the hydration energy for both the acidic and the basic SiO2 sols, in spite of an order of magnitude difference in the flocculation value. The remnants of adsorbed water after drying hinders sintering of the particles and ensures the peptizability of powders. The highly hydrophilic sols (sequence of hydrophilicity: SiO2> Al2O3>FeO OH ⋅ 0.5 H2O) are all oxides which are formed in acidic media. Received: 25 May 1997 Accepted: 13 October 1997  相似文献   
20.
Polyvinylamine hydrogels with silica particles encapsulated (PVAm/silica) were produced by a two‐step synthesis. In the first step, polyvinylformamide/silica (PVFA/silica) hybrids were synthesized from vinylformamide (VFA) and 1,3‐divinylimidazolidin‐2‐one (1,3‐bisvinylethyleneurea, BVU), as the crosslinker, by radical copolymerization in silica/water suspensions using different compositions of VFA/BVU. The target product PVAm/silica was obtained by acidic hydrolysis of the PVFA/silica hydrogels in a second step. The chemical structures of both hydrogels, PVFA/silica and PVAm/silica, respectively, were revealed by solid‐state 13C(1H) cross‐polarity/magic‐angle spinning NMR spectroscopy. Both hydrogels swelled significantly in water. The swelling capacity of the two systems was characterized by the correlation length ξ (or hydrodynamic blob size) of the network meshes with small‐angle neutron scattering experiments. ξ is significantly larger for PVAm/silica than for PVFA/silica, which corresponds to the observed higher swelling capacity of this polyelectrolyte material. Furthermore, the swelling behavior of the hybrid hydrogels was quantitatively described in terms of free swell capacity, centrifuge‐retention capacity, adsorption against pressure, and free swell rate as compared with values of the corresponding copolymer hydrogels. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3144–3152, 2002  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号