首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29207篇
  免费   5172篇
  国内免费   4394篇
化学   14225篇
晶体学   710篇
力学   1599篇
综合类   220篇
数学   803篇
物理学   9297篇
无线电   11919篇
  2024年   94篇
  2023年   521篇
  2022年   798篇
  2021年   1187篇
  2020年   1153篇
  2019年   1070篇
  2018年   941篇
  2017年   1415篇
  2016年   1763篇
  2015年   1734篇
  2014年   2046篇
  2013年   2453篇
  2012年   2217篇
  2011年   2316篇
  2010年   1753篇
  2009年   1822篇
  2008年   1886篇
  2007年   1828篇
  2006年   1705篇
  2005年   1462篇
  2004年   1302篇
  2003年   1061篇
  2002年   944篇
  2001年   773篇
  2000年   740篇
  1999年   577篇
  1998年   504篇
  1997年   484篇
  1996年   389篇
  1995年   334篇
  1994年   287篇
  1993年   254篇
  1992年   231篇
  1991年   170篇
  1990年   123篇
  1989年   81篇
  1988年   77篇
  1987年   54篇
  1986年   27篇
  1985年   40篇
  1984年   26篇
  1983年   17篇
  1982年   23篇
  1981年   16篇
  1980年   10篇
  1979年   16篇
  1978年   10篇
  1977年   7篇
  1975年   7篇
  1974年   9篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
131.
In this research, we investigated improved photobleaching characteristics of (1,10-phenanthroline)tris[4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato]europium(III) by forming nano-particles embedded into a sol-gel derived silica glass film by a conventional sol-gel process. The relative photoluminescence intensities after the UV irradiation for 90 min were 88, 76, and 67% for nano-particles in the sol-gel derived glass film, powders in the sol-gel derived glass film, and raw powders, respectively. This result indicates that the phtobleaching of this Eu-complex can improved by forming nano-partcile structures by a reprecipitation method and embedding in the sol-gel derived silica glass.  相似文献   
132.
The sum of the flexo-coefficients (e11+e33) was measured by the capacitance characteristic depending on the applied dc voltage in the HAN cell. The voltage for the minimum value of the capacitance was shifted by the influence of flexoelectric effect. One of the important problems for the evaluation for the flexo effect was the influence of impurity ions. Then, the chromatographic isolation phenomenon was used to separate impurity ions when the LC material was injected into the empty cell by the capillary action. The coefficient (e11+e33) of ZLI-4792 was measured, and a value of 26.0 pC/m was obtained.  相似文献   
133.
A facile colloidal approach to synthesize Ag8(Ge1?x,Snx)(S6?y,Sey) nanocrystals (NCs) in a highly controlled way across the entire compositional ranges (0≤x≤1, 0≤y≤6) has been developed. The NCs exhibit a uniform size distribution, highly crystalline structure, over 1 g scalable synthesis, and tunable band gaps in the range of 0.88–1.45 eV by varying their chemical compositions. The Ag8GeS6 NCs with a band gap of approximately 1.45 eV were employed as a model light harvester to assess their applicability in solar cells by a full solution‐processing device, yielding an efficiency of 0.28 % under AM1.5 illumination, demonstrating their application potential in solar energy utilization.  相似文献   
134.
White‐light‐emitting materials and devices have attracted enormous interest because of their great potential for various lighting applications. We herein describe the light‐emitting properties of a series of new difunctional organic molecules of remarkably simple structure consisting of two terminal 4‐pyridone push–pull subunits separated by a polymethylene chain. They were found to emit almost “pure” white light as a single organic compound in the solid state, as well as when incorporated in a polymer film. To the best of our knowledge, they are the simplest white‐light‐emitting organic molecules reported to date.  相似文献   
135.
Price declines and volume growth of concentrated photovoltaic (CPV) systems are analysed using the learning curve methodology and compared with other forms of solar electricity generation. Logarithmic regression analysis determines a learning rate of 18% for CPV systems with 90% confidence of that rate being between 14 and 22%, which is higher than the learning rates of other solar generation systems (11% for CSP and 12 to 14% for PV). Current CPV system prices are competitive with PV and CSP, which, when combined with the higher learning rate, indicates that CPV is likely to further improve its marketability. A target price of 1 $/W in 2020 could be achieved with a compound growth rate of 67% for the total deployed volume between 2014 and 2020, which would realize a cumulative deployed volume of 7900 MW. Other projections of deployment volumes from commercial sources are converted using the learning rate into future price scenarios, resulting in predicted prices in the range of 1.1 to 1.3 $/W in 2020. © 2014 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.  相似文献   
136.
Fluorescent solar concentrators (FSC) can concentrate light onto solar cells by trapping fluorescence through total internal reflection. In an ideal FSC, the major obstacle to efficient photon transport is the re‐absorption of the fluorescence emitted. In order to decompose the contribution of different photon flux streams within a FSC, the angular dependent re‐absorption probability is introduced and modeled in this paper. This is used to analyze the performance of different FSC configurations and is also compared with experimental results. To illustrate the application of the modeling, the collection efficiency of ideal devices has also been calculated from the re‐absorption probability and is shown to be useful for estimating non‐ideal losses such as those due to scattering or reflection from mirrors. The results also indicate that among the FSCs studied, the performance of those surrounded by four edge solar cells is close to ideal. The rapid optimization of FSCs has also been presented as another practical application of the models presented in this paper. © 2014 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons, Ltd.  相似文献   
137.
A major source of loss in cadmium sulfide/cadmium telluride (CdS/CdTe) solar cells results from light absorbed in the CdS window layer, which is not converted to electrical current. This film can be made more transparent by oxygen incorporation during sputter deposition at ambient temperature. Prior to this work, this material has not produced high‐efficiency devices on tin oxide‐coated soda‐lime‐glass substrates used industrially. Numerous devices were fabricated over a variety of process conditions to produce an optimized device. Although the material does not show a consistent increase in band gap with oxygenation, absorption in this layer can be virtually eliminated over the relevant spectrum, leading to an increase in short‐circuit current. Meanwhile, fill factor is maintained, and open‐circuit voltage increases relative to baseline devices with sublimated CdS. The trend of device parameters with oxygenation and thickness is consistent with an increasing conduction band offset at the window/CdTe interface. Optimization considering both initial efficiency and stability resulted in a National Renewable Energy Laboratory verified 15.2%‐efficient cell on 3.2‐mm soda‐lime glass. This window material was shown to be compatible with SnO2‐based transparent conducting oxide and high resistance transparent coated substrates using in‐line compatible processes. Copyright © 2015 John Wiley & Sons, Ltd  相似文献   
138.
The purpose of the present paper is to focus on the impact of oxygen gas partial pressure during the sputtering of i‐ZnO and ZnMgO on the transient behavior of Cu(In,Ga)Se2 (CIGSe) based solar cells parameters when a CBD‐Zn(S,O) buffer layer is used. Based on electrical characterization of cells, it is observed that the effect of light soaking is different on J–V characteristics depending on whether oxygen is or is not present during the first deposition time of the i‐ZnO or ZnMgO layers. In fact, when cells are prepared with standard i‐ZnO, the efficiencies are very low and a pronounced transient behavior is observed. However, when the first 10 nm of i‐ZnO or ZnMgO is formed by sputtered layer without adding oxygen during the process, depending on the thickness of the buffer layer, the transient effects strongly decreases. It is then possible to get stable cells reaching efficiencies quite similar to the CdS reference cells, especially with ZnMgO, without any post‐treatments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
139.
Silicon nitride coating deposited by the plasma‐enhanced chemical vapor deposition method is the most widely used antireflection coating for crystalline silicon solar cells. In this work, we employed double‐layered silicon nitride coating consisting of a top layer with a lower refractive index and a bottom layer (contacting the silicon wafer) with a higher refractive index for multicrystalline silicon solar cells. An optimization procedure was presented for maximizing the photovoltaic performance of the encapsulated solar cells or modules. The dependence of their photovoltaic properties on the thickness of silicon nitride coatings was carefully analyzed. Desirable thicknesses of the individual silicon nitride layers for the double‐layered coatings were calculated. In order to get statistical conclusions, we fabricated a large number of multicrystalline silicon solar cells using the standard production line for both the double‐layered and single‐layered antireflection coating types. On the cell level, the double‐layered silicon nitride antireflection coating resulted in an increase of 0.21%, absolute for the average conversion efficiency, and 1.8 mV and 0.11 mA/cm2 for the average open‐circuit voltage and short‐circuit current density, respectively. On the module level, the cell to module power transfer factor was analyzed, and it was demonstrated that the double‐layered silicon nitride antireflection coating provided a consistent enhancement in the photovoltaic performance for multicrystalline silicon solar cell modules than the single‐layered silicon nitride coating. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
140.
Inhibition of phospholipase A2 (PLA2) has long been considered for treating various diseases associated with an elevated PLA2 activity. However, safe and effective PLA2 inhibitors remain unavailable. Herein, we report a biomimetic nanoparticle design that enables a “lure and kill” mechanism designed for PLA2 inhibition (denoted “L&K-NP”). The L&K-NPs are made of polymeric cores wrapped with modified red blood cell membrane with two inserted key components: melittin and oleyloxyethyl phosphorylcholine (OOPC). Melittin acts as a PLA2 attractant that works together with the membrane lipids to “lure” in-coming PLA2 for attack. Meanwhile, OOPC acts as inhibitor that “kills” PLA2 upon enzymatic attack. Both compounds are integrated into the L&K-NP structure, which voids toxicity associated with free molecules. In the study, L&K-NPs effectively inhibit PLA2-induced hemolysis. In mice administered with a lethal dose of venomous PLA2, L&K-NPs also inhibit hemolysis and confer a significant survival benefit. Furthermore, L&K-NPs show no obvious toxicity in mice. and the design provides a platform technology for a safe and effective anti-PLA2 approach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号