首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1589篇
  免费   178篇
  国内免费   118篇
化学   1127篇
晶体学   13篇
力学   131篇
综合类   17篇
数学   28篇
物理学   229篇
无线电   340篇
  2024年   7篇
  2023年   55篇
  2022年   65篇
  2021年   98篇
  2020年   94篇
  2019年   48篇
  2018年   42篇
  2017年   67篇
  2016年   66篇
  2015年   70篇
  2014年   94篇
  2013年   120篇
  2012年   92篇
  2011年   101篇
  2010年   75篇
  2009年   83篇
  2008年   92篇
  2007年   79篇
  2006年   70篇
  2005年   71篇
  2004年   62篇
  2003年   57篇
  2002年   42篇
  2001年   36篇
  2000年   37篇
  1999年   30篇
  1998年   23篇
  1997年   26篇
  1996年   15篇
  1995年   17篇
  1994年   15篇
  1993年   8篇
  1992年   4篇
  1991年   8篇
  1990年   2篇
  1989年   3篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   2篇
  1976年   1篇
  1974年   1篇
排序方式: 共有1885条查询结果,搜索用时 11 毫秒
941.
Dielectric measurement in the range 0.1 Hz to 1 MHz were used to study the motions of polymers and ions in an ion-conducting polymer, polypropylene oxide containing small quantities (on the order of 1%) of lithium ions (LiClO4), confined as a sandwich of uniform thickness between parallel insulating mica surfaces. In the dielectric loss spectrum, we observed three peaks; they originated from the normal mode of the polymer, segmental mode of the polymer, and ion motions. With decreasing film thickness, the peak frequencies corresponding to the normal mode and ion motion shifted to lower frequencies, indicating retardation due to confinement above 30 nm. This was accompanied by diminished intensity of the dielectric normal-mode relaxation, suggesting that confinement diminished the fluctuations of the end-to-end vector of the chain dipole in the direction between the confining surfaces. On the contrary, the segmental mode was not affected at that thickness. Finally, significant retardation of the segmental mode was observed only for the thinnest film (14 nm). The different dynamical modes of the polymer (segmental and slowest normal modes) respond with different thickness and temperature dependence to confinement. Received 31 August 2001 and Received in final form 30 October 2001  相似文献   
942.
The basic aspects of interfacial interaction between the polymer binder and the filler in glass-fiber-reinforced plastics (GFRP) based on a high-density polyethylene (HDPE) are considered. The plastics were produced by the film-powder technology using a disperse radiation-modified HDPE as the binder. It is shown that the use of the -treated HDPE powder extends the capabilities of controlling the strength properties of GFRP sheets.  相似文献   
943.
Laser-assisted patterning and modification of polystyrene (PS) was investigated with respect to applications in micro-fluidics and cell culture. For this purpose the wettability, the adsorption of proteins and the adhesion of animal cells were investigated as function of laser- and processing parameters. The change of surface chemistry was characterized by X-ray photoelectron spectroscopy. The local formation of chemical structures suitable for improved cell adhesion was realized on PS surfaces by UV laser irradiation. Above and below the laser ablation threshold two different mechanisms affecting cell adhesion were detected. In the first case the debris deposited on and along laser irradiated areas was responsible for improved cell adhesion, while in the second case a photolytic activation of the polymer surface including a subsequent oxidization in oxygen or ambient air is leading to a highly localized alteration of protein adsorption from cell culture media and finally to increased cell adhesion. Laser modifications of PS using suitable exposure doses and an appropriate choice of the processing gas (helium or oxygen) enabled a highly localized control of wetting. The dynamic advancing contact angle could be adjusted between 2° and 150°. The hydrophilic and hydrophobic behaviour are caused by chemical and topographical surface changes.  相似文献   
944.
Poly(?-caprolactone)-poly(ethylene oxide)-poly(?-caprolactone) (PCL-PEG-PCL) triblock copolymer was covalently immobilized onto poly(lactide-co-glycolide) (PLGA) surface with the precursor of photopolymerizable and biodegradable PCL-PEG-PCL diacrylates. Argon plasma technique was exploited to obtain hydrophilic PLGA surface (HPLGA). The surface properties were characterized by Water contact angle and X-ray photoelectron spectroscopy (XPS) techniques. PCL-PEG-PCL surface modified hydrophobic PLGA and hydrophilic PLGA results in different surface physicochemical properties. PCL-PEG-PCL modified hydrophobic PLGA surface (PLGA-PCL-PEG-PCL) demonstrates excellent inhibition of platelet adhesion and activation; while PCL-PEG-PCL modified hydrophilic PLGA surface (HPLGA-PCL-PEG-PCL) results in good cytocompatibility. The possible mechanism was discussed and the driven force was ascribed to the different assembly behavior of PCL-PEG-PCL on PLGA surface dependant on the hydrophilic/hydrophobic property of PLGA. This simple and effective surface engineering method is also suitable for the other biomaterials such as polyurethane (PU), silicon rubber and poly(ethylene terephthalate) (PET) to obtain the enhanced biocompatibility.  相似文献   
945.
With the rapid development of Micro-Electro-Mechanical System (MEMS), we enter a field in which the surface effects have dominated many of the micro-scale phenomena, and the adhesive contact is one of the focuses. In this paper, a feasible model for finite element computation is presented via a macroscopic and microscopic combination approach, in which the adhesive forces are simulated by some non-linear spring elements considering the softening stage. Two basic problems concerning the adhesion effect were considered; through specific quantitative analysis, the results show a consistency with the current elastic continuum theories of adhesion and a brief investigation into the effects of adhesion on plastic deformation and tangential contact will be carried out as well. The project supported by the National Natural Science Foundation of China (10172050, 90205022) and Key Grant Project of Chinese MoE (0306)  相似文献   
946.
Adhesion of hydrophobic colloids (clay minerals) on the surface of bubbles of air and the transport of the composite units formed by bubbles and mineral particles were observed in a glass micro model.When a clay mineral suspension flowed in a porous medium that contained bubbles of air trapped in small pores, particles accumulated preferentially on the upstream portion of the bubbles, and quasi-stable bubble-mineral particle units were formed. With an increase in the flow velocity, the particles moved along the interface between the bubble and the liquid and accumulated on the downstream portion of the bubbles. A large stress could mobilize the units which, occasionally, accumulated in larger voids.The mechanism suggested is adhesion of the particles on the surface of the bubble due to compression of their diffuse electrical double layer. The adsorbed particles can be moved by shear stresses which act in the region of water molecules between the well-organized layers of water on the surfaces of the bubble and the clay particles. A large enough shear stress causes the bubbles to become more streamlined, allowing them to move in the channel system. If in contact, the common lamina of the bubbles can withdraw and rupture.Bubbles transport from 20 to 50 times more particles than can be transported by average suspension.  相似文献   
947.
Prediction of paddy soil normal adhesion to steel surfaces by fuzzy logic   总被引:1,自引:0,他引:1  
Numerous data concerning paddy soil composition, water content and soil-steel normal adhesion were collected in South China during 1974-1983. The fuzzy logic relation of adhesion with clay content and water content was derived, by which paddy soil adhesion to steel surfaces was predicted if soil composition and water content were known.  相似文献   
948.
OPTIMUM DESIGN OF ADHESIVE BONDING OFRESIN-BASE COMPOSITES   总被引:1,自引:0,他引:1  
I.IntroductionThemajorityofproductsofthefiberreinforcedcompositemateria1sareinthin-walIstructure.Themeritsofcompositesmaybefullyplayedbytheadhesivebonding.Theadhesivebondinghasfollowingadvantages:a.thejointofthesameordifferentkindsofmaterialsmayberealized…  相似文献   
949.
It is established that food waste can be repurposed to extend its lifecycle and decrease its carbon footprint. In this work, SCOBY (symbiotic culture of bacteria and yeast) waste from kombucha tea production has been repurposed as a catalyst support. Copper nanoparticles (Cu NPs) have been embedded in a piece of treated SCOBY via an in-situ method which enabled the catalyst, inCu/t-SCOBY, to be easily recycled. In addition, inCu/t-SCOBY catalyzed the full reduction of 4-nitrophenol in an excess of sodium borohydride (NaBH4) within 20 minutes. After 6 additional catalytic cycles, the catalyst maintained up to 50% of its performance in the first cycle. Characterization of the catalyst has also been done to understand the mechanism of action and interactions occurring between t-SCOBY and Cu NPs. The results of this work clearly present a proof-of-concept in utilizing porous wastes materials such as SCOBY as catalyst supports, allowing metallic NPs to be efficacious and practical heterogenous catalysts.  相似文献   
950.
Bacterial cellulose (BC) is a natural polymer that has fascinating attributes, such as biocompatibility, low cost, and ease of processing, being considered a very interesting biomaterial due to its options for moldability and combination. Thus, BC-based compounds (for example, BC/collagen, BC/gelatin, BC/fibroin, BC/chitosan, etc.) have improved properties and/or functionality, allowing for various biomedical applications, such as artificial blood vessels and microvessels, artificial skin, and wounds dressing among others. Despite the wide applicability in biomedicine and tissue engineering, there is a lack of updated scientific reports on applications related to dentistry, since BC has great potential for this. It has been used mainly in the regeneration of periodontal tissue, surgical dressings, intraoral wounds, and also in the regeneration of pulp tissue. This review describes the properties and advantages of some BC studies focused on dental and oral applications, including the design of implants, scaffolds, and wound-dressing materials, as well as carriers for drug delivery in dentistry. Aligned to the current trends and biotechnology evolutions, BC-based nanocomposites offer a great field to be explored and other novel features can be expected in relation to oral and bone tissue repair in the near future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号