首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11080篇
  免费   1925篇
  国内免费   1396篇
化学   6521篇
晶体学   229篇
力学   527篇
综合类   83篇
数学   507篇
物理学   5453篇
无线电   1081篇
  2024年   34篇
  2023年   132篇
  2022年   224篇
  2021年   314篇
  2020年   380篇
  2019年   371篇
  2018年   353篇
  2017年   364篇
  2016年   484篇
  2015年   424篇
  2014年   480篇
  2013年   1286篇
  2012年   623篇
  2011年   720篇
  2010年   574篇
  2009年   701篇
  2008年   676篇
  2007年   620篇
  2006年   654篇
  2005年   588篇
  2004年   526篇
  2003年   509篇
  2002年   450篇
  2001年   332篇
  2000年   396篇
  1999年   302篇
  1998年   219篇
  1997年   216篇
  1996年   221篇
  1995年   148篇
  1994年   170篇
  1993年   141篇
  1992年   123篇
  1991年   105篇
  1990年   80篇
  1989年   69篇
  1988年   57篇
  1987年   36篇
  1986年   48篇
  1985年   43篇
  1984年   47篇
  1983年   10篇
  1982年   24篇
  1981年   22篇
  1980年   16篇
  1979年   14篇
  1978年   10篇
  1977年   9篇
  1976年   7篇
  1973年   24篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
211.
A high-pressure phase of the clathrate hydrate of tetrahydrofuran was prepared by freezing a liquid phase of overall composition THF · 7 H2O under a pressure of 3.0 kbar, or by pressurizing the solid structure II THF hydrate of 255K to 3.4 kbar. Unfortunately, the products recovered at 77K were always mixed phase materials as shown by X-ray powder diffraction. A number of diffraction lines could be indexed in terms of the cubic structure I hydrate with a slightly expanded lattice parameter, 12.08 Å, giving some support to Dyadin's idea that the high pressure phase transition involves a conversion of Structure II to Structure I. Other phases observed in the recovered product include Ice IX and amorphous materials. The reversion of the high pressure sample to the structure II hydrate was followed by differential scanning calorimetry. At ambient pressure, the high pressure sample converts slowly back to Structure II hydrate event at 77K.NRCC No. 35786.  相似文献   
212.
The vaterite—calcite transition above 630 K has been studied by isothermal and non-isothermal differential scanning calorimetry. Vaterite samples prepared under different conditions were investigated. The transition temperature is strongly dependent on the sample preparation. The observed transition enthalpy Htr is nearly equal for different samples and experimental conditions. From 28 measurements a value of Htr–(3.12±0.11) kJ mol–1 was obtained. The activation energy for the polymorphic transition was calculated from the Arrhenius plot and by use of isoconversional methods, as a function of the degree of conversion. The influence of the kinetic model distortion and experimental uncertainties on the obtained data was discussed. The actual value of the activation energy was assessed at Ea=(250±10) kJ mol–1 for nearly all examined samples. Functions, corresponded to the model mechanism of nuclei formation and growth, provide the unambiguous consideration of the transition kinetic for the investigated vaterite samples. Differences in the dynamic behaviour of several samples at the transition are established.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
213.
We calculate energy barriers of atom- and proton-transfer reactions in hydrogen-bonded complexes in the gas phase. Our calculations do not involve adjustable parameters and are based on bond-dissociation energies, ionization potentials, electron affinities, bond lengths, and vibration frequencies of the reactive bonds. The calculated barriers are in agreement with experimental data and high-level ab initio calculations. We relate the height of the barrier with the molecular properties of the reactants and complexes. The structure of complexes with strong hydrogen bonds approaches that of the transition state, and substantially reduces the barrier height. We calculate the hydrogen-abstraction rates in H-bonded systems using the transition-state theory with the semiclassical correction for tunneling, and show that they are in excellent agreement with the experimental data. H-bonding leads to an increase in tunneling corrections at room temperature.  相似文献   
214.
The La2W2−xMoxO9 series has been synthesized by the ceramic method. An alternative synthesis using microwave radiation is also reported. La2W2O9 has two polymorphs and the low-temperature phase (α) transforms to the high-temperature form (β) at 1077°C. The influence of the W/Mo substitution in this phase transition has been investigated by DTA. The β structure for x≥0.7 compositions can be prepared as single phase at any cooling rate. The β phase for 0.3≤x≤0.7 compounds can be prepared as single phase by quenching, whereas a mixture of α and β phases is obtained by slow cooling. The W/Mo ratio in both coexisting phases is different with the β-phase having a higher Mo content. The x=0.1 and 0.2 compounds have been prepared as mixtures of phases. The room temperature structure of β-La2W1.7Mo0.3O9 has been analyzed by the Rietveld method in P213 space group. The final R-factors were RWP=9.0% and RF=5.6% with a structure similar to that of β-La2Mo2O9. Finally, the thermal expansion of both types of structures has been determined from a thermodiffractometric study. The thermal expansion coefficients were 2.9×10−6 and 9.7×10−6°C−1 for α-La2W2O9 and β-La2W1.2Mo0.8O9, respectively.  相似文献   
215.
胶束形成的分形研究   总被引:3,自引:0,他引:3  
提出了测定胶束质量分维的两种新方法即粘度法和GPC-LALLS联机法,随后从动态光散射数据计算了离子型胶束SDS的分维,这些实验数值之间能互相印证.建立了放束形成过程的Laplace分形理论,计算得分维D=1.54(二级),作高级计算的分维D=1.67与前面实测值基本相符,另外,从唯象理论角度,讨论了胶束的多重分形及其热力学行为,发现有两个相变点β_c=-4和β_c=-1.并认为这两个转折分别对应着单分子<=>分形胶束<=>经典胶束结构之间的转变.  相似文献   
216.
陆熙炎 《有机化学》1993,13(3):227-243
研究了过渡金属催化的炔烃衍生物的异构化反应.从α,β-炔酮、2-炔酸酯和2-炔酸酰胺可以生成相应的(E,E)-共轭双烯酮、双烯酸酯和双烯酸酰胺.首次从2-炔醇异构化为相应的2-烯酮或2-烯醛.这一反应具有简单、高产率和立体选择性的优点.假设反应烯经过连二烯中间体,然后再异构化成产物,这一反应提供了方便而有潜在应用价值的方法以制备天然产物合成时的重要中间体.  相似文献   
217.
四(对—羟基苯基)卟啉过渡金属配合物的合成   总被引:15,自引:0,他引:15  
师同顺  柳巍 《应用化学》1998,15(3):73-75
四(对-羟基苯基)卟啉过渡金属配合物的合成师同顺*柳巍刘国发王杏乔王世颖(吉林大学化学系长春130023)关键词卟啉,过渡金属配合物,合成1997-10-17收稿,1998-03-20修回国家自然科学基金会资助四(对-羟基苯基)卟啉(H2THPP)可...  相似文献   
218.
The thermal conductivity and the heat capacity per unit volumec p have been measured for the urea-hexadecane inclusion compound using the transient hot-wire method. Measurements were made under isobaric conditions at a pressure of 0.1 GPa and in the temperature range of 100–300 K. There was evidence for a phase transition at a temperature of about 160 K, in reasonable agreement with previous work. For the high-temperature phase was independent of temperature within ±1%. The low-temperature phase showed a weak temperature dependence, with (d In/d InT) p = –0.13. It was inferred that interaction between acoustic phonons and low-frequency vibrational excitations of the guest molecules made a major contribution to the thermal resistivity. For the quantityc p a weak maximum was observed in the region of the phase transition temperature.Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.  相似文献   
219.
Energized molecules are the essential actors in chemical transformations in solution. As the rearrangement of bonds requires a movement of nuclei, vibrational energy is often the driving force for a reaction. Vibrational energy can be redistributed within the "hot" molecule, or relaxation can occur when molecules interact. Both processes govern the rates, pathways, and quantum yields of chemical transformations in solution. Unfortunately, energy transfer and the breaking, formation, and rearrangement of bonds take place on ultrafast timescales. This Review highlights experimental approaches for the direct, ultrafast measurement of photoinduced femtochemistry and energy flow in solution. In the first part of this Review, we summarize recent experiments on intra- and intermolecular energy transfer. The second part discusses photoinduced decomposition of large organic peroxides, which are used as initiators in free radical polymerization. The mechanisms and timescales of their decarboxylation determine the initial steps of polymerization and the microstructure of the polymer product.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号